...
首页> 外文期刊>Structural health monitoring >Acousto-ultrasonics-based health monitoring for nano-engineered composites using a dispersive graphene-networked sensing system
【24h】

Acousto-ultrasonics-based health monitoring for nano-engineered composites using a dispersive graphene-networked sensing system

机译:基于ACOUSTO-Ultrasonics的纳米工程复合材料的健康监测,使用色散石墨烯网传感系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sensing is a fundamental yet crucial part of a functional structural health monitoring system. Substantial research has been invested in developing new sensing techniques to enhance sensing efficiency and accuracy. Practical applications of structural health monitoring approaches to real engineering structures require strict criteria for the sensing system (e.g. weight, position, intrusion and endurance), which challenge existing sensing techniques. The boom in nanotechnology has offered promising solutions for the development of new sensing approaches. However, a bottleneck still exists when considering the density of sensors and surface-mounted modality of installation. In this study, graphene nanoparticles are dispersed into a glass fibre/epoxy composite to form a dispersive network sensing system. The piezoresistivity of the graphene-formed network changes locally as a result of the change of inter-nanoparticle distances which triggers the ‘tunnelling effect’ and drives the sensor to respond to propagating elastic waves. Due to the dense graphene network formed within the composite, only a small area is required, functioning as a single sensing element to capture ultrasonic waves. To validate such capability, passive acoustic emission tests and active guided ultrasonic wave tests are performed individually. The graphene-networked sensing system can precisely capture wave signals which contain effective features to identify impact spot or damage location. Integrating passive graphene-formed network and active lead zirconate titanate wafers can form a dense network, capable of fulfilling general structural health monitoring tasks.
机译:感应是功能性结构健康监测系统的基本且重要的一部分。已经投入了大量研究,开发了新的传感技术,以提高传感效率和准确性。结构健康监测方法对实际工程结构的实际应用需要对传感系统的严格标准(例如重量,位置,入侵和耐久性),这挑战了现有的传感技术。纳米技术的繁荣向开发新的传感方法提供了有希望的解决方案。然而,考虑到传感器的密度和安装的安装方式时,仍然存在瓶颈。在该研究中,将石墨烯纳米颗粒分散到玻璃纤维/环氧复合物中以形成分散网络传感系统。由于纳米颗粒距离的变化而触发了“隧道效应”并驱动传感器响应传播弹性波的纳米颗粒距离的变化,石墨烯 - 形成网络的压阻变化。由于在复合材料内形成的致密石墨烯网络,仅需要小面积,作为捕获超声波的单个传感元件。为了验证这种能力,被动声发射测试和主动引导超声波测试单独进行。石墨烯网传感系统可以精确地捕获具有有效特征的波信号,以识别冲击点或损坏位置。集成被动石墨烯 - 形成的网络和有源铅锆钛酸盐晶片可以形成密集的网络,能够满足一般结构健康监测任务。

著录项

  • 来源
    《Structural health monitoring》 |2021年第1期|240-254|共15页
  • 作者单位

    Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences|CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology|Department of Mechanical Engineering The Hong Kong Polytechnic University;

    Department of Mechanical Engineering The Hong Kong Polytechnic University;

    College of Automation Nanjing University of Posts and Telecommunications;

    Department of Mechanical Engineering The Hong Kong Polytechnic University;

    Department of Mechanical Engineering The Hong Kong Polytechnic University;

    Department of Mechanical Engineering The Hong Kong Polytechnic University;

    Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences|CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institutes of Advanced Technology;

    Department of Mechanical Engineering The Hong Kong Polytechnic University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nano-engineered composites; structural health monitoring; acoustic emission; guided ultrasonic waves; graphene-networked sensing system;

    机译:纳米工程复合材料;结构健康监测;声发射;引导超声波;石墨烯网传感系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号