...
首页> 外文期刊>Structural Engineering and Mechanics >Ultimate behavior and ultimate load capacity of steel cable-stayed bridges
【24h】

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

机译:钢斜拉桥的极限性能和极限承载力

获取原文
获取原文并翻译 | 示例
           

摘要

The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.
机译:本文的主要目的是研究带有设计变量的钢斜拉桥的极限性能,并比较用于评估斜拉桥极限承载力的计算方法的有效性和适用性。本文考虑的方法有弹性屈曲分析,非弹性屈曲分析和非线性弹塑性分析。弹性屈曲分析使用数值特征值计算,而不考虑斜拉桥的几何非线性和主要部件的非弹性材料性能。非弹性屈曲分析使用迭代特征值计算来考虑材料的非弹性行为,但不能考虑斜拉桥的几何非线性。 AASHTO LRFD中规定的具有列强度曲线的正切模量概念用于考虑非弹性屈曲行为。介绍了无弹性屈曲分析的详细程序,并开发了相应的计算机代码。相反,非线性弹塑性分析使用增量迭代法,可以同时考虑斜拉桥的几何非线性和非弹性材料特性。使用了专用软件ABAQUS,并且新编写了用户子例程来更新电缆的等效模量,以考虑在每个增量步骤中由于电缆松弛而引起的几何非线性。通过三种分析对极限跨度为600 m,900 m和1200 m,不同梁深度和活荷载工况的斜拉桥数值模型进行了评估。结果表明,非弹性屈曲分析是获得大跨度斜拉桥极限承载力的一种有效的近似方法,它是一种简单而快速的替代方法,而弹性屈曲分析极大地高估了斜拉桥的整体稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号