首页> 外文期刊>Stochastic environmental research and risk assessment >Revisiting prior distributions, Part Ⅱ: Implications of the physical prior in maximum entropy analysis
【24h】

Revisiting prior distributions, Part Ⅱ: Implications of the physical prior in maximum entropy analysis

机译:回顾先验分布,第二部分:最大熵分析中物理先验的含义

获取原文
获取原文并翻译 | 示例
           

摘要

The well-known "Maximum Entropy Formalism" offers a powerful framework for deriving probability density functions given a relevant knowledge base and an adequate prior. The majority of results based on this approach have been derived assuming a flat uninformative prior, but this assumption is to a large extent arbitrary (any one-to-one transformation of the random variable will change the flat uninformative prior into some non-constant function). In a companion paper we introduced the notion of a natural reference point for dimensional physical variables, and used this notion to derive a class of physical priors that are form-invariant to changes in the system of dimensional units. The present paper studies effects of these priors on the probability density functions derived using the maximum entropy formalism. Analysis of real data shows that when the maximum entropy formalism uses the physical prior it yields significantly better results than when it is based on the commonly used flat uninformative prior. This improvement reflects the significance of the incorporating additional information (contained in physical priors), which is ignored when flat priors are used in the standard form of the maximum entropy formalism. A potentially serious limitation of the maximum entropy formalism is the assumption that sample moments are available. This is not the case in many macroscopic real-world problems, where the knowledge base available is a finite sample rather than population moments. As a result, the maximum entropy formalism generates a family of "nested models" parameterized by the unknown values of the population parameters. In this work we combine this formalism with a model selection scheme based on Akaike's information criterion to derive the maximum entropy model that is most consistent with the available sample. This combination establishes a general inference framework of wide applicability in scientific/engineering problems.
机译:众所周知的“最大熵形式主义”提供了一个强大的框架,可以在相关知识基础和适当先验条件下推导概率密度函数。基于这种方法的大多数结果是在假设平坦的非信息性先验的情况下得出的,但是这种假设在很大程度上是任意的(随机变量的任何一对一转换都会将平坦的非信息性先验变为一些非常数函数)。在随附的论文中,我们介绍了尺寸物理变量的自然参考点的概念,并使用此概念来推导一类物理先验,这些先验形式对于尺寸单位系统的变化是形式不变的。本文研究了这些先验对使用最大熵形式主义推导的概率密度函数的影响。对真实数据的分析表明,当最大熵形式主义使用物理先验时,与基于常用的扁平无信息先验相比,其产生的结果要好得多。这种改进反映了合并附加信息(包含在物理先验中)的重要性,当以最大熵形式主义的标准形式使用平坦先验时,将忽略此信息。最大熵形式主义的一个潜在的严重限制是假设采样矩可用。在许多宏观现实问题中,情况并非如此,在这些问题中,可用的知识库是有限的样本而不是人口矩。结果,最大熵形式主义生成了由总体参数的未知值参数化的“嵌套模型”族。在这项工作中,我们将这种形式主义与基于Akaike信息准则的模型选择方案相结合,以得出与可用样本最一致的最大熵模型。这种结合建立了在科学/工程问题中广泛适用的通用推理框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号