...
首页> 外文期刊>IEEE Journal of Solid-State Circuits >TG-SPP: A One-Transmission-Gate Short-Path Padding for Wide-Voltage-Range Resilient Circuits in 28-nm CMOS
【24h】

TG-SPP: A One-Transmission-Gate Short-Path Padding for Wide-Voltage-Range Resilient Circuits in 28-nm CMOS

机译:TG-SPP:在28-NM CMOS中的宽电压范围弹性电路的单传输门短路填充

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Resilient circuits with timing error detection and correction (EDAC) can eliminate the excess timing margin but suffer from the short-path (SP) issue where SPs must be padded to exceed the detection window. SP padding (SPP) is similar to, but severer than, hold time fixing. Thus, it incurs significant area overhead, especially when working in the near-threshold region. In this article, we propose a transmission gate-based SPP (TG-SPP) method, which uses only one transmission gate to extend an SP to the negative clock phase while keeping the critical paths unaffected. Compared with the two-phase latch way or the conventional padding with tens to hundreds of buffers in an SP, our method efficiently decreases the overhead. We develop transmission gate insertion rules and an automatic insertion flow to overcome the complicated intersection problem of short and critical paths. To further reduce the EDAC area overhead, we also propose a lightweight error detection latch that has only two extra transistors compared to a conventional 24-T flip-flop for the conventional way. We implement all the proposed techniques in an SHA-256 chip using the 28-nm CMOS process. Results show that our TG-SPP method achieves the same padding effect as the two-phase latch-based method while reducing both the glitch power and sequential area overhead by a factor of 6 . The fabricated resilient chips are measured to achieve 55%-405% frequency improvement and 38.6%-69.4% power saving compared with the typical margined baseline at the near-threshold region.
机译:具有定时错误检测和校正(EDAC)的弹性电路可以消除多余的时序距离,但遭受SPS必须填充的短路(SP)问题以超过检测窗口。 SP Padding(SPP)类似但比保持时间固定更严格。因此,它引起了显着的区域开销,特别是在近阈值区域工作时。在本文中,我们提出了一种基于传输栅极的SPP(TG-SPP)方法,其仅使用一个传输门来将SP扩展到负时钟阶段,同时保持关键路径不受影响。与SP中的两相闩锁方式或数百个缓冲器的传统填充相比,我们的方法有效地降低了开销。我们开发传输门插入规则和自动插入流动,以克服短期和关键路径的复杂交叉问题。为了进一步减少EDAC区域的开销,我们还提出了一种轻量级错误检测锁存器,其仅与传统方式的传统24-T触发器相比具有两个额外的晶体管。我们使用28-NM CMOS工艺在SHA-256芯片中实施所有提议的技术。结果表明,我们的TG-SPP方法实现了与基于两相锁存的方法相同的填充效果,同时将羽毛功率和顺序面积开销减少了6倍。测量制造的弹性芯片以达到55%-405%的频率改善和近阈值区域的典型边距基线相比省略38.6%-69.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号