...
首页> 外文期刊>Solar Energy >Counter flow sweep gas demand for the ceria redox cycle
【24h】

Counter flow sweep gas demand for the ceria redox cycle

机译:二氧化铈氧化还原循环的逆流扫气需求

获取原文
获取原文并翻译 | 示例
           

摘要

The exploitation of solar radiation as abundant energy source and its utilization in solar fuels are crucial for a large scale deployment of a sustainable energy economy. In the search for related efficient, scalable, and economic technologies several two-step solar thermo-chemical redox cycles are under assessment. Generic thermodynamic process assessments have identified the parasitic power consumption for maintaining low partial pressures of oxygen during the reduction of the redox material as possibly critical efficiency limiting factor. Two options are generally considered for maintaining low oxygen pressures: reduction of the total pressure and sweeping. In case of sweeping with an inert gas, the parasitic power demand is proportional to the sweep gas amount and comprises the pumping power as well as the power for heating the sweep gas to the targeted reduction temperature and the power related to the provision of clean sweep gas. Different models have been proposed in literature to predict the required sweep gas amount for the redox cycle with highly diverging results. A proposed counter flow model leads to negligible sweep gas demands over a wide set of operational conditions while another model leads to prohibitively high sweep gas demands below 5 kPa. In this study a refined counter flow model is proposed, which considers the actual oxygen release characteristic of ceria and the oxygen uptake capability of the sweep gas stream. While the model predicts much higher values of required sweep gas than the previous counter flow model, the application of a counter flow still leads to considerable savings. In addition, a numerical model is used to analyze different operational implications for a counter flow arrangement, showing that a significant additional reduction of the sweep gas demand can be reached by keeping the reduction extent below the thermodynamic equilibrium value. The derived counter flow sweep gas model is compared to the alternative reduction of the total pressure by the use of vacuum pumps on a system level. The results show the relative performances and operational window of sweep gas for redox cycles. (C) 2015 Elsevier Ltd. All rights reserved.
机译:将太阳辐射作为丰富的能源加以利用及其在太阳能中的利用对于大规模部署可持续能源经济至关重要。在寻找相关的有效,可扩展和经济的技术时,正在评估几个两步的太阳能热化学氧化还原循环。常规的热力学过程评估已将在氧化还原材料还原过程中保持低氧分压的寄生功耗确定为可能的关键效率限制因素。为了保持低氧气压力,通常考虑两种选择:降低总压力和吹扫。如果用惰性气体吹扫,则寄生功率需求与吹扫气量成正比,包括泵浦功率,将吹扫气加热到目标还原温度的功率以及与提供纯净吹扫有关的功率加油站。文献中已经提出了不同的模型来预测氧化还原循环所需的吹扫气体量,结果差异很大。提出的逆流模型导致在宽范围的运行条件下扫气需求可忽略不计,而另一个模型导致低于5 kPa的扫气需求过高。在这项研究中,提出了一种改进的逆流模型,该模型考虑了二氧化铈的实际氧气释放特性和吹扫气流的氧气吸收能力。尽管该模型预测的所需吹扫气体值比以前的逆流模型高得多,但逆流的应用仍然可以节省大量成本。另外,使用数值模型来分析逆流布置的不同操作含义,表明通过将降低程度保持在热力学平衡值以下,可以实现吹扫气需求量的显着额外降低。通过在系统级使用真空泵,将导出的逆流吹扫气体模型与总压力的替代降低进行比较。结果显示了氧化还原循环中吹扫气的相对性能和操作窗口。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号