首页> 外文期刊>Solar Energy >Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications
【24h】

Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications

机译:NaNO3封装的高温储热技术的实验与计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this work is to establish methods for storage of thermal energy using encapsulated phase change materials (EPCMs) at temperatures up to 440 degrees C applicable in concentrating solar plants (CSPs), in which heat transfer fluid (HTF) from the solar collector would pass through the storage system embedded with EPCM capsules. NaNO3, having latent heat of 176 kJ/kg at 308 degrees C, is selected as the storage medium. Stainless steel capsules containing NaNO3 are fabricated and installed in a pilot-scale thermal energy storage (TES) system for performance tests. Compressed air is used as heat transfer fluid in the current tests. The test section (T/S) with EPCM capsules successfully demonstrate the ability to transfer thermal energy to and from a transport fluid, achieving energy storage and retrieval in multiple charging and discharging cycles. In a given cycle where capsule temperatures varied from similar to 250 degrees C to similar to 386 degrees C, the EPCM is found to store significant energy per unit mass (similar to 211 kJ/kg of capsule), with the phase change material (PCM) NaNO3 accounting for similar to 95% of the total energy stored in the capsules. The latent heat of the NaNO3 contributes to similar to 42% of the energy stored in the capsules. It is expected that the storage density of the EPCM would be even greater for plant size TES systems with larger size capsules, without the penalties associated with the limited scale used here. A mathematical model has been developed for the test section with EPCM capsules and its predictions are found to agree with experimental measurements within 7% discrepancy in stored energy. The dynamic performance of charging and discharging rates are also well predicted by the model, giving confidence for engineering design capabilities in future applications using EPCMs for thermal energy storage. (C) 2015 Elsevier Ltd. All rights reserved.
机译:这项工作的目的是建立一种适用于聚光太阳能发电厂(CSP)的温度高达440摄氏度的封装相变材料(EPCM)来存储热能的方法,其中来自太阳能集热器的传热流体(HTF)将通过嵌入EPCM胶囊的存储系统。选择在308℃具有176 kJ / kg潜热的NaNO3作为存储介质。制造包含NaNO3的不锈钢胶囊,并将其安装在中试规模的热能存储(TES)系统中,以进行性能测试。在当前测试中,压缩空气被用作传热流体。带有EPCM胶囊的测试部分(T / S)成功展示了将热能传递到运输流体和从运输流体传递热能的能力,并在多个充电和放电循环中实现了能量存储和回收。在胶囊温度从相似的250摄氏度变化到相似的386摄氏度的给定周期中,发现EPCM每单位质量存储的能量很大(类似于211 kJ / kg的胶囊),并且相变材料(PCM) NaNO3占胶囊中储存的总能量的95%左右。 NaNO3的潜热贡献了胶囊中存储的42%的能量。预期对于具有较大胶囊的工厂尺寸TES系统,EPCM的存储密度将更高,而不会因此处使用的有限规模而受到惩罚。已经为带有EPCM胶囊的测试部分开发了一个数学模型,发现其预测结果与实验测量结果相符,存储能量差异在7%之内。该模型还可以很好地预测充放电速率的动态性能,从而为使用EPCM进行热能存储的未来应用提供工程设计能力的信心。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号