首页> 外文期刊>Soils and foundations >SOIL-WATER COUPLED FINITE DEFORMATION ANALYSIS BASED ON A RATE-TYPE EQUATION OF MOTION INCORPORATING THE SYS CAM-CLAY MODEL
【24h】

SOIL-WATER COUPLED FINITE DEFORMATION ANALYSIS BASED ON A RATE-TYPE EQUATION OF MOTION INCORPORATING THE SYS CAM-CLAY MODEL

机译:基于包含凸轮凸轮模型的运动速率型方程的水-水耦合有限变形分析

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a new method of soil-water coupled finite deformation analysis of saturated soils that considers inertial forces. This method allows changes in the geometric shape of the soil to be taken into account and is capable of dealing with all types of external forces irrespective of whether they are static or dynamic. To be more specific, the paper describes the following points, which differ from the conventional methods: 1) the governing equations for saturated soil including the rate-type equation of motion containing a jerk term of the soil skeleton conforming to u-p formulation and updated Lagrangian, 2) derivation of a weak form of the rate-type equation of motion and discretization of the finite elements, and 3) use of the implicit time integration method for application of the conventional linear acceleration method (which assumes linear variation of acceleration) to the jerk term. By mounting the elasto-plastic constitutive equation (SYS Cam-clay model), which can cover a wide range of soils and soil conditions, onto the above method of analysis, examples of simulation of dynamic/static triaxial laboratory testing of saturated soil specimens are described. The soil specimens were assumed to be medium dense sand under conditions of small-amplitude cyclic loading, partial drainage, and constant cell pressure. The simulation yielded the following results: (1) In the case of low frequencies, compaction occurs during loading and compression progresses over the entire specimen. (2) In the case of high frequencies, during loading and in the period in which wave propagation continues within the specimen after the end of loading, compaction occurs at the drained end of the specimen, whereas liquefaction occurs in its interior. After this stage, massive compression takes place within the specimen, leading to consolidation (consolidation after liquefaction).
机译:本文提出了一种考虑惯性力的饱和土土-水耦合有限变形分析的新方法。这种方法可以考虑土壤几何形状的变化,并且能够处理所有类型的外力,无论它们是静态的还是动态的。更具体地说,本文描述了以下几点,这些点与常规方法不同:1)饱和土壤的控制方程式,包括速率型运动方程式,该方程式包含符合向上公式和更新的Lagrangian的土壤骨架的加速度项; 2)推导运动的速率型运动方程的弱形式和有限元离散化; 3)使用隐式时间积分方法将常规线性加速度方法(假定加速度线性变化)应用于混蛋通过将可涵盖广泛土壤和土壤条件的弹塑性本构方程(SYS Cam-clay模型)安装到上述分析方法上,可以对饱和土样品进行动态/静态三轴实验室测试的模拟示例为描述。在小振幅循环载荷,部分排水和恒定的细胞压力的条件下,假定土壤标本为中等密度的砂土。模拟得出以下结果:(1)在低频情况下,在加载过程中会发生压实,整个样品的压缩过程都会发生。 (2)在高频率的情况下,在加载过程中以及加载结束后在样品内部继续传播波的周期中,压实发生在样品的排水端,而液化发生在其内部。在此阶段之后,试样内发生大量压缩,从而导致固结(液化后固结)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号