首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading
【24h】

Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading

机译:几何和地震参数对液化引起的横向扩展影响的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The lateral movement of a liquefiable soil layer on gentle slopes is the most visible and devastating type of liquefaction-induced ground failure. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, pier of the bridges and life-lines by exerting large lateral forces on the structures. In this paper coupled dynamic field equations of extended Biot's theory with u-p formulation are used for simulating the phenomenon and the soil behavior is modeled by a critical state two-surface plasticity model for sands. Furthermore, in this study variation of permeability coefficient during liquefaction is taken into account. The permeability coefficient is related to variation of the excess pore water pressure ratio. At first, two centrifuge tests on liquefiable sand which have gently inclined ground surfaces with different conditions are simulated and numerical results are compared with experimental observations. These comparisons showed that numerical simulations have very good consistency with experimental observations in modeling of excess pore pressures, lateral displacements, and surface settlements. After validation, the effects of different factors such as ground slope, thickness of the liquefiable layer, soil relative density, maximum acceleration of dynamic loading, frequency of input motion and number of load cycles are investigated on the amount of lateral displacement. At the end, by using the results of the conducted extensive parametric study, a new relation is proposed for estimating the magnitude of maximum lateral displacement. Comparison of the results of this equation with experimental records, field observations and other empirical relations shows the advantage of this equation over other previously proposed relations. (C) 2016 Elsevier Ltd. All rights reserved.
机译:液化土层在平缓斜坡上的横向运动是液化引起的地面破坏最明显和破坏性最大的类型。最近的地震表明,这种现象会在结构上施加较大的侧向力,从而对沿海结构,桥梁墩和救生索造成严重破坏。本文采用扩展Biot理论与u-p公式耦合的动态场方程来模拟这种现象,并通过砂的临界状态两面可塑性模型对土壤行为进行建模。此外,在这项研究中,考虑了液化过程中渗透系数的变化。渗透系数与过量孔隙水压力比的变化有关。首先,对在不同条件下平缓倾斜地面的液化砂进行了两次离心试验,并将数值结果与实验结果进行了比较。这些比较表明,数值模拟与过剩孔隙压力,横向位移和表面沉降建模中的实验观察结果具有很好的一致性。验证后,研究了诸如地面坡度,可液化层厚度,土壤相对密度,动态载荷的最大加速度,输入运动的频率和载荷循环次数等因素对横向位移量的影响。最后,通过进行广泛的参数研究的结果,提出了一种新的关系来估计最大横向位移的大小。将该方程式的结果与实验记录,现场观察和其他经验关系进行比较,表明该方程式优于其他先前提出的关系式。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号