首页> 外文期刊>IEEE sensors journal >Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
【24h】

Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications

机译:无线传感器应用中通过频率上变频从低频振动中清除能量

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an electromagnetic (EM) vibration-to-electrical power generator for wireless sensors, which can scavenge energy from low-frequency external vibrations. For most wireless applications, the ambient vibration is generally at very low frequencies (1–100 Hz), and traditional scavenging techniques cannot generate enough energy for proper operation. The reported generator up-converts low-frequency environmental vibrations to a higher frequency through a mechanical frequency up-converter using a magnet, and hence provides more efficient energy conversion at low frequencies. Power is generated by means of EM induction using a magnet and coils on top of resonating cantilever beams. The proposed approach has been demonstrated using a macroscale version, which provides 170 nW maximum power and 6 mV maximum voltage. For the microelectromechanical systems (MEMS) version, the expected maximum power and maximum voltage from a single cantilever is 3.97 $mu$ W and 76 mV, respectively, in vacuum. Power level can be increased further by using series-connected cantilevers without increasing the overall generator area, which is 4 mm$^{2}$ . This system provides more than an order of magnitude better energy conversion for 10–100 Hz ambient vibration range, compared to a conventional large mass/coil system.
机译:本文提出了一种用于无线传感器的电磁(EM)振动至电动发电机,该发电机可从低频外部振动中清除能量。对于大多数无线应用,环境振动通常处于非常低的频率(1–100 Hz),并且传统的扫气技术无法产生足够的能量来正常工作。所报道的发电机通过使用磁体的机械频率上变频器将低频环境振动上变频到更高的频率,因此在低频下提供了更有效的能量转换。通过电磁感应使用电磁和悬臂梁顶部的线圈产生电能。已使用宏版本演示了所建议的方法,该宏版本提供170 nW的最大功率和6 mV的最大电压。对于微机电系统(MEMS)版本,单个悬臂在真空中的预期最大功率和最大电压分别为3.97μW和76 mV。通过使用串联的悬臂可以进一步提高功率水平,而无需增加总的发电机面积,即4 mm ^ {2} $。与传统的大型质量/线圈系统相比,该系统在10–100 Hz的环境振动范围内能提供更好的能量转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号