...
首页> 外文期刊>Sensors and Actuators >Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange
【24h】

Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange

机译:通过配体交换远程掺杂增强硫化氢气体传感PbS胶体量子点

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Colloidal quantum dots (CQDs) are solution-synthesized semiconductor nanocrystals with size typically below 10 nm. Their large surface-to-volume ratio and abundant active surface sites, combined with the grain size effect and solution-processability make CQDs promising building blocks for low-cost and high-performance gas sensors. Here we employed the ligand exchange strategy to develop low-power and highly sensitive H_2S gas sensors based on PbS CQDs. Following the layer-by-layer spin-coating of PbS CQDs capped with long-chain oleic acid ligands from synthesis, a surface treatment using different inorganic salts was conducted for ligand exchange in air ambient at room temperature. Upon exposure to 50 ppm of H_2S at 135 ℃, the resistance of all those sensors decreased shown as the response and the Pb(NO_3)_2 treatment yielded highest response (4218 at 135 ℃) with shortest response/recovery time. We tentatively proposed a H_2S-induced and temperature-promoted p-to-n transition of PbS CQDs as the sensing mechanism and the role of Pb(NO_3)_2 treatment was attributed to an n-type remote doping effect realized by the ligand exchange, which was further supported by the energy dispersive spectrometry (EDS) and ultraviolet photoelectron spectroscopy (UPS) analysis.
机译:胶体量子点(CQD)是溶液合成的半导体纳米晶体,尺寸通常低于10 nm。它们的大的表面体积比和丰富的活性表面部位,再加上晶粒尺寸效应和溶液可加工性,使得CQD成为低成本和高性能气体传感器的有希望的构建基块。在这里,我们采用配体交换策略来开发基于PbS CQD的低功率和高灵敏度H_2S气体传感器。在合成过程中逐层旋涂长链油酸配体封端的PbS CQD之后,使用不同的无机盐进行表面处理,以便在室温下在空气中进行配体交换。在135℃下暴露于50 ppm H_2S时,所有这些传感器的电阻均降低,显示为响应,而Pb(NO_3)_2处理产生最高响应(在135℃下为4218),响应/恢复时间最短。我们暂时提出了H_2S诱导和温度促进的PbS CQD的p到n跃迁作为传感机制,Pb(NO_3)_2处理的作用归因于通过配体交换实现的n型远程掺杂效应,能量色散光谱(EDS)和紫外光电子能谱(UPS)分析进一步支持了这一点。

著录项

  • 来源
    《Sensors and Actuators》 |2015年第6期|434-439|共6页
  • 作者单位

    School of Optical and Electronic Information, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    School of Optical and Electronic Information, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    School of Optical and Electronic Information, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    School of Optical and Electronic Information, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China;

    Wuhan National Laboratory for Optoelectronics, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    School of Optical and Electronic Information, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

    Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China;

    Wuhan National Laboratory for Optoelectronics, Huazhong University of Sciences and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gas sensor; Colloidal quantum dot; Ligand exchange; Lead sulfide; Hydrogen sulfide;

    机译:气体传感器胶体量子点配体交换;硫化铅;硫化氢;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号