首页> 外文期刊>Semiconductor science and technology >Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials
【24h】

Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials

机译:Si-Ge-Sn合金的能带结构计算:实现直接带隙材料

获取原文
获取原文并翻译 | 示例
       

摘要

Alloys of silicon (Si), germanium (Ge) and tin (Sn) are continuously attracting research attention as possible direct band gap semiconductors with prospective applications in optoelectronics. The direct gap property may be brought about by the alloy composition alone or combined with the influence of strain, when an alloy layer is grown on a virtual substrate of different compositions. In search for direct gap materials, the electronic structure of relaxed or strained Ge_(1-x)Sn_x and Si_(1-x)Sn_x alloys, and of strained Ge grown on relaxed Ge_(1-x-y)Si_xSn_y, was calculated by the self-consistent pseudo-potential plane wave method, within the mixed-atom supercell model of alloys, which was found to offer a much better accuracy than the virtual crystal approximation. Expressions are given for the direct and indirect band gaps in relaxed Ge_(1-x)Sn_x, strained Ge grown on relaxed Si_xGe_(1-x-y)Sn_y and strained Ge_(1-x)Sn_x grown on a relaxed Ge_(1-y)Sn_y substrate, and these constitute the criteria for achieving a (finite) direct band gap semiconductor. Roughly speaking, good-size (up to ~0.5 eV) direct gap materials are achievable by subjecting Ge or Ge_(1-x)Sn_x alloy layers to an intermediately large tensile strain, but not excessive5 because this would result in a small or zero direct gap (detailed criteria are given in the text). Unstrained Ge_(1-x)Sn_x bulk becomes a direct gap material for Sn content of > 17%, but offers only smaller values of the direct gap, typically ≤ 0.2 eV. On the other hand, relaxed Sn_xSi_(1-x) alloys do not show a finite direct band gap.
机译:硅(Si),锗(Ge)和锡(Sn)的合金作为潜在的直接带隙半导体在光电子学中的潜在应用正在不断吸引研究关注。当合金层在不同组成的虚拟基板上生长时,直接间隙性能可以通过单独使用合金成分或结合应变的影响来实现。为了寻找直接的间隙材料,通过以下公式计算了弛豫或应变的Ge_(1-x)Sn_x和Si_(1-x)Sn_x合金以及在弛豫的Ge_(1-xy)Si_xSn_y上生长的应变Ge的电子结构。自混合伪势平面波方法,在合金的混合原子超级元胞模型中,发现比虚拟晶体近似方法具有更好的精度。给出了弛豫Ge_(1-x)Sn_x,在弛豫Si_xGe_(1-xy)Sn_y上生长的应变Ge和在弛豫Ge_(1-y)上生长的应变Ge_(1-x)Sn_x的直接和间接带隙的表达式Sn_y基板,这些构成了实现(有限)直接带隙半导体的标准。粗略地讲,通过对Ge或Ge_(1-x)Sn_x合金层施加中等大的拉伸应变,但不要过度拉伸,即可获得良好尺寸(高达0.5 eV)的直接间隙材料,因为这会导致很小或为零。直接差距(详细标准在正文中给出)。当Sn含量> 17%时,未应变的Ge_(1-x)Sn_x块成为直接间隙材料,但仅提供较小的直接间隙值,通常≤0.2 eV。另一方面,松弛的Sn_xSi_(1-x)合金没有显示出有限的直接带隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号