...
首页> 外文期刊>Semiconductor science and technology >Deep levels in metamorphic InAs/InGaAs quantum dot structures with different composition of the embedding layers
【24h】

Deep levels in metamorphic InAs/InGaAs quantum dot structures with different composition of the embedding layers

机译:嵌入层组成不同的变质InAs / InGaAs量子点结构中的深能级

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Deep levels in metamorphic InAs/InxGa1-xAs quantum dot (QD) structures are studied with deep level thermally stimulated conductivity (TSC), photoconductivity (PC) and photoluminescence (PL) spectroscopy and compared with data from pseudomorphic InGaAs/GaAs QDs investigated previously by the same techniques. We have found that for a low content of indium (x = 0.15) the trap density in the plane of self-assembled QDs is comparable or less than the one for InGaAs/GaAs QDs. However, the trap density increases with x, resulting in a rise of the defect photoresponse in PC and TSC spectra as well as a reduction of the QD PL intensity. The activation energies of the deep levels and some traps correspond to known defect complexes EL2, EL6, EL7, EL9, and EL10 inherent in GaAs, and three traps are attributed to the extended defects, located in InGaAs embedding layers. The rest of them have been found as concentrated mainly close to QDs, as their density in the deeper InGaAs buffers is much lower. This an important result for the development of light-emitting and light-sensitive devices based on metamorphic InAs QDs, as it is a strong indication that the defect density is not higher than in pseudomorphic InAs QDs.
机译:利用深层热激发电导率(TSC),光电导(PC)和光致发光(PL)光谱研究了变质InAs / InxGa1-xAs量子点(QD)结构中的深能级,并将其与先前由伪晶态InGaAs / GaAs QDs研究的数据进行了比较。相同的技术。我们已经发现,对于低含量的铟(x = 0.15),自组装QD平面中的陷阱密度与InGaAs / GaAs QD相当或小于。但是,陷阱密度随x增加,导致PC和TSC光谱中缺陷光响应的增加以及QD PL强度的降低。深能级和一些陷阱的活化能对应于GaAs中固有的已知缺陷复合物EL2,EL6,EL7,EL9和EL10,并且三个陷阱归因于位于InGaAs嵌入层中的扩展缺陷。已经发现它们的其余部分主要集中在量子点附近,因为它们在更深的InGaAs缓冲液中的密度要低得多。这是开发基于变质InAs QD的发光和光敏器件的重要结果,因为它有力地表明缺陷密度不高于伪InAs QD。

著录项

  • 来源
    《Semiconductor science and technology》 |2017年第12期|125001.1-125001.10|共10页
  • 作者单位

    Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelectron Devices & Syst, Coll Optoelect Engn, Shenzhen 518060, Peoples R China;

    Taras Shevchenko Natl Univ Kyiv, Dept Phys, 64 Volodymyrska St, UA-01601 Kiev, Ukraine;

    CNR, Inst Mat Elect & Magnetism, I-43124 Parma, Italy;

    Taras Shevchenko Natl Univ Kyiv, Dept Phys, 64 Volodymyrska St, UA-01601 Kiev, Ukraine;

    CNR, Inst Mat Elect & Magnetism, I-43124 Parma, Italy;

    CNR, Inst Mat Elect & Magnetism, I-43124 Parma, Italy;

    Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelectron Devices & Syst, Coll Optoelect Engn, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelectron Devices & Syst, Coll Optoelect Engn, Shenzhen 518060, Peoples R China;

    Shenzhen Univ, Minist Educ & Guangdong Prov, Key Lab Optoelectron Devices & Syst, Coll Optoelect Engn, Shenzhen 518060, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanostructure; quantum dot; InAs/InGaAs; defect; thermally stimulated conductivity; photoconductivity; photoluminescence;

    机译:纳米结构;量子点;InAs / InGaAs;缺陷;热激发电导率;光电导;光致发光;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号