...
首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress
【24h】

Unmixing-Based Fusion of Hyperspatial and Hyperspectral Airborne Imagery for Early Detection of Vegetation Stress

机译:基于混合的超空间和高光谱机载图像融合,用于植被压力的早期检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many applications require a timely acquisition of high spatial and spectral resolution remote sensing data. This is often not achievable since spaceborne remote sensing instruments face a tradeoff between spatial and spectral resolution, while airborne sensors mounted on a manned aircraft are too expensive to acquire a high temporal resolution. This gap between information needs and data availability inspires research on using Remotely Piloted Aircraft Systems (RPAS) to capture the desired high spectral and spatial information, furthermore providing temporal flexibility. Present hyperspectral imagers on board lightweight RPAS are still rare, due to the operational complexity, sensor weight, and instability. This paper looks into the use of a hyperspectral–hyperspatial fusion technique for an improved biophysical parameter retrieval and physiological assessment in agricultural crops. First, a biophysical parameter extraction study is performed on a simulated citrus orchard. Subsequently, the unmixing-based fusion is applied on a real test case in commercial citrus orchards with discontinuous canopies, in which a more efficient and accurate estimation of water stress is achieved by fusing thermal hyperspatial and hyperspectral (APEX) imagery. Narrowband reflectance indices that have proven their effectiveness as previsual indicators of water stress, such as the Photochemical Reflectance Index (PRI), show a significant increase in tree water-stress detection when applied on the fused dataset compared to the original hyperspectral APEX dataset (${bf R}^{bf 2} = {bf 0.62}$, ${bf p} lt {bf 0.001}$ vs. ${bf R}^{bf 2} = {bf 0.21}$, ${bf p} gt {bf 0.1}$). Maximal ${bf R}^{bf 2}$ values of 0.93 and 0.86 are obtained by a linear relationship between the vegetation index and the resp., water and chlorophyll, parameter content maps.
机译:许多应用需要及时获取高空间和光谱分辨率的遥感数据。这通常是无法实现的,因为星载遥感仪器面临空间和光谱分辨率之间的权衡,而安装在有人驾驶飞机上的机载传感器过于昂贵,无法获得高时间分辨率。信息需求与数据可用性之间的这种差距激发了人们对使用遥控飞机系统(RPAS)来捕获所需的高光谱和空间信息的研究的灵感,此外还提供了时间灵活性。由于操作复杂性,传感器重量和不稳定性,目前轻量级RPAS上的高光谱成像仪仍然很少。本文探讨了高光谱-超空间融合技术在农作物中改善生物物理参数检索和生理评估的应用。首先,对模拟柑橘园进行生物物理参数提取研究。随后,将基于分解的融合应用于具有不连续冠层的商业柑桔园中的真实测试案例,其中通过融合热超空间和高光谱(APEX)图像获得更有效,更准确的水分胁迫估算。与原始的高光谱APEX数据集相比,应用于融合数据集的窄带反射率指数已证明可以有效地用作水分胁迫的视觉前指标,例如光化学反射率指数(PRI),显示出树木水分胁迫检测的显着增加。 inline-formula> $ {bf R} ^ {bf 2} = {bf 0.62} $ $ {bf p} lt {bf 0.001} $ $ { bf R} ^ {bf 2} = {bf 0.21} $ $ {bf p} gt {bf 0.1} $ )。通过线性关系获得的最大 $ {bf R} ^ {bf 2} $ 值分别为0.93和0.86植被指数与水质,叶绿素,参数含量图之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号