首页> 外文期刊>Science >Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn_2O_5 for NO Oxidation in Diesel Exhaust
【24h】

Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn_2O_5 for NO Oxidation in Diesel Exhaust

机译:基于Mn-Mullite(Sm,Gd)Mn_2O_5的混合相氧化物催化剂在柴油机尾气中的氧化

获取原文
获取原文并翻译 | 示例
           

摘要

Oxidation of nitric oxide (NO) for subsequent efficient reduction in selective catalytic reduction or lean NO_X trap devices continues to be a challenge in diesel engines because of the low efficiency and high cost of the currently used platinum (Pt)-based catalysts. We show that mixed-phase oxide materials based on Mn-mullite (Sm, Gd)Mn_2O_5 are an efficient substitute for the current commercial Pt-based catalysts. Under laboratory-simulated diesel exhaust conditions, this mixed-phase oxide material was superior to Pt in terms of cost, thermal durability, and catalytic activity for NO oxidation. This oxide material is active at temperatures as low as 120°C with conversion maxima of ~45% higher than that achieved with Pt. Density functional theory and diffuse reflectance infrared Fourier transform spectroscopy provide insights into the NO-to-NO_2 reaction mechanism on catalytically active Mn-Mn sites via the intermediate nitrate species.
机译:由于当前使用的铂(Pt)基催化剂的低效率和高成本,氧化一氧化氮(NO)以用于随后的选择性催化还原或稀薄的NO_X捕集装置的有效还原仍然是柴油发动机中的挑战。我们表明,基于Mn-莫来石(Sm,Gd)Mn_2O_5的混合相氧化物材料是当前商业Pt基催化剂的有效替代品。在实验室模拟的柴油机排气条件下,这种混合相氧化物材料在成本,热耐久性和NO氧化催化活性方面均优于Pt。该氧化物材料在低至120°C的温度下仍具有活性,转化率最大值比Pt高约45%。密度泛函理论和漫反射红外傅里叶变换光谱提供了通过中间硝酸盐类物质对具有催化活性的Mn-Mn位点进行NO-to-NO_2反应机理的见解。

著录项

  • 来源
    《Science》 |2012年第6096期|p.832-835|共4页
  • 作者单位

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA,State Key Laboratory of Materials Processing and Die and Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, Hubei, China;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

    Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive,Lexington, KY 40511, USA;

    Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive,Lexington, KY 40511, USA;

    Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive,Lexington, KY 40511, USA;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA,Department of Materials Science and Engineering and Department of Physics, University of Texas at Dallas, Richardson, TX 75080, USA,WCU Multiscale Mechanical Design Division, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea;

    Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA94063,USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号