...
首页> 外文期刊>The Science of the Total Environment >A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection
【24h】

A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection

机译:冷气压等离子体抗微生物机制水消毒的系统研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Waterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood. Herein, we investigate the role of several shortlived reactive oxygen species (ROS) and cellular responses in the CAP inactivation of yeast cells in water. The results show that singlet oxygen (~1O_2), hydroxyl radical (˙OH) and superoxide anion (˙O_2~-) are generated in this plasma-water system, and ~O_2~- served as the precursor of ˙OH. The 5-min plasma treatment resulted in the effective inactivation (more than 2-log reduction) of yeast cells in water. The ROS scavengers significantly increased the survival ratio in the following order: water < D-Man (scavenging ˙OH) < SOD (scavenging ˙O_2~-)< L -His (scavenging ~1O_2), indicating that ~1O_2 contributes the most to the yeast inactivation. In addition, the acidic pH had a synergetic antimicrobial effect with ROS against the yeast cells. During the CAP inactivation process, yeast cells underwent apoptosis in the first 3 min due to the accumulation of intracellular ROS, mitochondrial dysfunction and intracellular acidification, later followed by necrosis under longer exposure times, attributed to the destruction of the cell membrane. Additionally, L-His could switch the cell fate from necrosis to apoptosis through mitigating plasma-induced oxidative stress, indicating that the level of oxidative stress is a critical factor for cell death fate determination. These findings provide comprehensive insights into the antimicrobial mechanism of CAP, which can promote the development of CAP as an alternative water disinfection strategy.
机译:由致病微生物引起的水性疾病对人类健康构成了严重的威胁。冷大气压等离子体(盖子)最近获得了许多利益,作为对水消毒的有希望的快速,有效,经济,经济的和环保的方法。然而,仍然没有清楚地理解玻璃帽帽的抗微生物机制。在此,我们研究了几种短期活性氧物质(ROS)和细胞反应在水中的胶囊中灭活中的细胞反应的作用。结果表明,在该等离子体系统中产生单次氧(〜1O_2),羟基(˙OH)和超氧化物阴离子(˙O_2〜 - ),〜0〜2〜 - 用作˙OH的前体。 5分钟的等离子体处理导致水中的酵母细胞有效灭活(超过2-伐木量)。 ROS清除剂以下列顺序显着提高存活率:水

著录项

  • 来源
    《The Science of the Total Environment》 |2020年第1期|134965.1-134965.12|共12页
  • 作者单位

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China;

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China;

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China;

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China;

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China School of Food and Bioengineering Henan University of Animal Husbandry and Economy Zhengzhou 450000 PR China;

    Henan Key Laboratory of Ion-beam Bioengineering College of Agricultural Science Zhengzhou University Zhengzhou 450052 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cold atmospheric-pressure plasma (CAP); Yeast cells; Reactive oxygen species (ROS); Singlet oxygen (~1O_2); Antimicrobial mechanism; Water disinfection;

    机译:冷大气压等离子体(帽);酵母细胞;反应性氧(ROS);单线氧(〜1O_2);抗微生物机制;水消毒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号