首页> 外文期刊>The Science of the Total Environment >Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings
【24h】

Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings

机译:柱反应器中富铁尾矿的微生物还原转化及其对采矿尾矿中砷反应性运输的环境影响

获取原文
获取原文并翻译 | 示例
           

摘要

The evolution of iron minerals under buried conditions is one of the most important processes controlling the mineral composition and heavy metal transportation in sediments. Microbial-mediated reduction plays a critical role in iron mineral transformation in natural environment.This study examined the transformation pathways of iron minerals mediated by bacteria and the changes of associated arsenic species in iron-rich mine tailings. Static and column reactions were designed to monitor variations of minerals and released iron and arsenic, a reactive transport model was simulated to support laboratory results. Laboratory experiments showed that major ferric minerals were preferentially dissolved and reduced by dissimilatory iron-reducing bacteria. The released Fe3+ in fluid promoted oxidative dissolution of pyrite and arsenopyrite, and precipitation of oxides and carbonates. The arsenic released to fluid was inferred to be immobilized by both pristine fernhydrite and newly formed hydrous ferric oxides via surface complexation. The reaction system maintained a steady-state of iron mineral transformation and arsenic (im)mobilization. In the latter stage of column reactor experiments, continuous reaction and removal of dissolved Fe3+ and Fe2+ destabilized the state, leading to arsenic re-location and eventually rising concentration in fluid. The findings implicate that microbial-mediated iron mineral evolution remarkably influence the natural mineral assemblages and the fate of contaminant transport in the environment, and that deposition of iron oxides is essential in environmental protection and pollution recovery. (C) 2019 Published by Elsevier B.V.
机译:埋藏条件下铁矿物的演化是控制沉积物中矿物成分和重金属迁移的最重要过程之一。微生物介导的还原在自然环境中的铁矿物质转化中起着至关重要的作用。本研究探讨了细菌介导的铁矿物质的转化途径以及富铁矿山尾矿中相关砷物种的变化。设计了静态和柱反应,以监测矿物质的变化以及铁和砷的释放,模拟了反应性传输模型以支持实验室结果。实验室实验表明,异化铁还原菌可优先溶解和还原主要的铁矿物质。流体中释放的Fe3 +促进了黄铁矿和毒砂的氧化溶解,以及氧化物和碳酸盐的沉淀。推测通过表面络合作用,释放到液体中的砷既可以被原始水合硫酸氢盐又可以被新形成的含水三氧化二铁固定化。反应系统保持铁矿物质转化和砷(不固定)固定的稳态。在塔式反应器实验的后期,连续反应以及去除溶解的Fe3 +和Fe2 +会使状态不稳定,从而导致砷重新定位并最终使流体浓度升高。这些发现暗示着微生物介导的铁矿物质的演化显着影响了自然矿物质的组合以及环境中污染物迁移的命运,并且氧化铁的沉积对于环境保护和污染的恢复至关重要。 (C)2019由Elsevier B.V.发布

著录项

  • 来源
    《The Science of the Total Environment》 |2019年第20期|1008-1018|共11页
  • 作者单位

    Dartmouth Coll, Dept Earth Sci, HB6105 Fairchild Hall, Hanover, NH 03755 USA|Nanjing Univ, Key Lab Surficial Geochem, Minist Educ, Sch Earth Sci & Engn, Nanjing 210046, Jiangsu, Peoples R China;

    Nanjing Univ, Key Lab Surficial Geochem, Minist Educ, Sch Earth Sci & Engn, Nanjing 210046, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Deposits Res, Nanjing 210046, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Earth Sci & Engn, State Key Lab Deposits Res, Nanjing 210046, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microbial reduction; Iron oxides; Column reactor; Reactive transport; Arsenic; Mine tailings;

    机译:微生物还原;氧化铁;柱式反应器;反应性运输;砷;矿山尾矿;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号