首页> 外文学位 >Fate and transport of arsenic in uranium mine tailings: Rabbit Lake Mine, Saskatchewan, Canada.
【24h】

Fate and transport of arsenic in uranium mine tailings: Rabbit Lake Mine, Saskatchewan, Canada.

机译:铀矿尾矿中砷的去向和运输:加拿大萨斯喀彻温省的兔子湖煤矿。

获取原文
获取原文并翻译 | 示例

摘要

The mineralogical controls on the long-term stability of secondary arsenic precipitates formed from iron-rich hydrometallurgical solutions were studied in arsenic-rich uranium mine tailings deposited in the Rabbit Lake in-pit tailings management facility (RLITMF), northern Saskatchewan, Canada. Core samples (n = 42) of tailings were collected to a depth of 70.6 m below the surface of the tailings near the centre of the pit. Total arsenic and iron concentrations in iron-rich samples of the mine tailings ranged from 56 to 17,300 mug/g and 10,000 to 63,200 mug/g, respectively (Fe/As molar ratios of 5.3 to 303). Synchrotron-based X-ray absorption spectroscopic studies of tailings samples, fresh mill precipitates, and reference compounds showed that the arsenic in iron-rich areas of the tailings existed as As5+ and showed that it was adsorbed to 2-line ferrihydrite through inner sphere bidentate linkages. Furthermore, under the conditions in the RLITMF, the 2-line ferrihydrite did not undergo any measurable conversion to more crystalline goethite or hematite, even in tailings discharged to the RLITMF 10 years prior to sampling. Stability field diagrams generated from pH, Eh, and temperature measurements on tailings samples (mean values of 9.36, +235 mV, and 4.4°C, respectively) supported arsenic and iron in the tailings as existing in the As5+ and Fe3+ states. The concentration of arsenic in the tailings pore fluids ranged from 0.24 to 140 mg/l. The variability in the concentration of dissolved arsenic was inversely proportional to the Fe/As molar ratio in the tailings solids. Furthermore, there was no correlation between the age of the tailings and arsenic concentrations in the tailings pore fluids. A three-month long mill-scale hydrometallurgical experiment (2,700 m3 of effluent treated/day) was conducted over a pH range 1-11 to develop a thermodynamic database for the dominant mineralogical controls on arsenic in the mill and the resulting mill tailings. The arsenic concentrations in the uranium barren leach process waste solutions (raffinate) ranged from an average of 526 mg/l at pH = 1.0 (initial) to an average of 1.34 mg/l at pH = 10.8 (discharge as tailings). Geochemical modeling of chemistry data (PHREEQC) showed arsenic solubility is controlled by the formation of scorodite from pH 2.4-3.1, that scorodite is unstable (releasing arsenic back in to solution) above pH 3.1, and arsenic adsorption to the surface of 2-line ferrihydrite was the dominant control on the solubility of arsenic from pH 3.2-11.0. Minor alterations to the thermodynamic properties of arsenite and arsenate adsorption to 2-line ferrihydrite improved the fit between measured mill-scale and modeled concentrations for pH 3.2-11.0. Three-dimensional, reactive multi-component transport modeling (MODFLOW and MT3D99) of the RLITMF and the surrounding groundwater regime was conducted using geochemical data collected during a field monitoring program, laboratory-based diffusion cell experiments, and data from the literature to quantify the fate and long-term (10,000 year) transport of arsenic. Results showed that adsorption of arsenic to the tailings (or filter sand located adjacent to the tailings) and diffusive transport of dissolved arsenic in the tailings should reduce the source term concentration of arsenic to between 39 and 70% of the initial concentrations over the 10,000 year simulation period. Based on these simulations, the arsenic concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/l over the 10,000 year period. These findings indicated that the engineered in-pit disposal of U mine tailings should provide long-term protection for the local groundwater regime from arsenic contamination, provided there are sufficient adsorption sites in the tailings management facility.
机译:在加拿大北部萨斯喀彻温省Rabbit Lake矿山尾矿管理设施(RLITMF)中沉积的富砷铀矿尾矿中,研究了由富铁湿法冶金溶液形成的次生砷沉淀物的长期矿物学控制。尾矿的岩心样品(n = 42)被收集到靠近坑中心的尾矿表面以下70.6 m的深度。矿山尾矿中富铁样品中的总砷和铁浓度分别为56至17,300杯/克和10,000至63,200杯/克(Fe / As摩尔比为5.3至303)。尾矿样品,新鲜磨矿沉淀物和参考化合物的基于同步辐射的X射线吸收光谱研究表明,尾矿富铁区域中的砷以As5 +的形式存在,并表明它通过内球二齿吸附到2线亚铁水合物上联系。此外,在RLITMF的条件下,即使在取样前10年排放到RLITMF的尾矿中,两线铁水铁矿也没有任何可测量的转化成结晶性针铁矿或赤铁矿的方法。根据尾矿样品的pH,Eh和温度测量值(分别为9.36,+ 235 mV和4.4°C的平均值)生成的稳定性场图支持砷和铁在尾矿中的存在,如As5 +和Fe3 +状态。尾矿孔隙液中砷的浓度范围为0.24至140 mg / l。尾矿固体中溶解砷浓度的变化与Fe / As摩尔比成反比。此外,尾矿的年龄与尾矿孔隙液中砷浓度之间没有相关性。在pH值1-11范围内进行了为期三个月的工厂规模湿法冶金试验(每天处理2700立方米的废水),以开发热力学数据库,用于控制工厂中砷的主要矿物学控制以及所产生的工厂尾矿。贫铀浸出工艺废液(萃余液)中的砷浓度范围从pH = 1.0(初始)平均为526 mg / l到pH = 10.8(排放为尾矿)的平均1.34 mg / l。化学数据的地球化学模型(PHREEQC)显示,砷的溶解度受pH 2.4-3.1范围内的臭葱石形成的控制,臭葱石在pH高于3.1时不稳定(将砷释放回溶液中),并且砷吸附到两线表面pH值为3.2-11.0时,水铁矿是砷溶解度的主要控制因素。砷的热力学性质的微小变化和砷酸盐对2线亚铁水合物的吸附,改善了测得的工厂规模与pH 3.2-11.0的建模浓度之间的拟合度。 RLITMF和周围地下水状况的三维反应性多组分迁移模型(MODFLOW和MT3D99)是使用现场监测程序,实验室扩散池实验和文献资料收集的地球化学数据进行定量的,命运与砷的长期(10,000年)运输。结果表明,在尾矿中砷的吸附(或与尾矿相邻的滤砂)以及尾矿中溶解性砷的扩散运输应将一万年来砷的源足浓度降低至初始浓度的39%至70%模拟期。根据这些模拟,在10,000年的时间内,尾矿设施向下50 m的区域地下水中的砷浓度应保持在0.001 mg / l的背景浓度。这些发现表明,只要在尾矿管理设施中有足够的吸附位,对U矿尾矿进行工程化的井内处置应为当地地下水状况提供长期保护,使其免受砷污染。

著录项

  • 作者

    Moldovan, Brett J.;

  • 作者单位

    The University of Saskatchewan (Canada).;

  • 授予单位 The University of Saskatchewan (Canada).;
  • 学科 Geochemistry.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号