...
首页> 外文期刊>Review of Scientific Instruments >An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices
【24h】

An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

机译:基于原位加速器的磁融合设备上的等离子体-材料相互作用科学诊断

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (∼1 m), high-current (∼1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ∼5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.
机译:本文提出了一种新颖的基于粒子加速器的诊断方法,该方法可以无损地测量磁聚变设备内部材料表面成分的演变。诊断的目的是有助于对电磁融合中等离子体与材料相互作用的综合理解,而这种现象由于缺乏原位材料表面诊断而受到严重阻碍。该诊断程序的目的是在每次等离子体发射的时间尺度上远程生成同位素浓度图,该同位素浓度图覆盖磁聚变设备内部大部分面向等离子体的表面,而无需中断真空或物理接触材料表面。我们的仪器使用紧凑型(约1 m)大电流(约1毫安)射频四极加速器,向MIT的Alcator C-Mod托卡马克注入0.9 MeV氘核。我们控制等离子发射之间的托卡马克磁场,以将氘核引导至材料表面,在此氘核会引起高Q核反应,而低Z同位素约为5μm。感应中子和伽马射线用闪烁探测器测量。能谱分析提供了表面成分的定量重建。本文概述了诊断技术,即基于加速器的原位材料监视(AIMS),以及对Alcator C-Mod托卡马克的首次AIMS诊断。实验验证表明,可以将优化的氘核束注入托卡马克中,可以在材料表面上定量检测低Z同位素(如氘和硼),并且可以通过电磁操纵来访问不同的测量位置。还介绍了第一个AIMS分析,该分析在Alcator C-Mod FY2012等离子运动结束时测量单个表面位置上氘的相对变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号