...
首页> 外文期刊>Review of Scientific Instruments >High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model
【24h】

High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model

机译:使用基于椭圆的磁滞模型对压电执行器进行高速跟踪控制

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, an ellipse-based mathematic model is developed to characterize the rate-dependent hysteresis in piezoelectric actuators. Based on the proposed model, an expanded input space is constructed to describe the multivalued hysteresis function H[u](t) by a multiple input single output (MISO) mapping Γ:R2→R. Subsequently, the inverse MISO mapping Γ−1(H[u](t),H[](t);u(t)) is proposed for real-time hysteresis compensation. In controller design, a hybrid control strategy combining a model-based feedforward controller and a proportional integral differential (PID) feedback loop is used for high-accuracy and high-speed tracking control of piezoelectric actuators. The real-time feedforward controller is developed to cancel the rate-dependent hysteresis based on the inverse hysteresis model, while the PID controller is used to compensate for the creep, modeling errors, and parameter uncertainties. Finally, experiments with and without hysteresis compensation are conducted and the experimental results are compared. The experimental results show that the hysteresis compensation in the feedforward path can reduce the hysteresis-caused error by up to 88% and the tracking performance of the hybrid controller is greatly improved in high-speed tracking control applications, e.g., the root-mean-square tracking error is reduced to only 0.34% of the displacement range under the input frequency of 100 Hz. © 2010 American Institute of Physics Article Outline INTRODUCTION AN ELLIPSE-BASED HYSTERESIS MODEL EXPERIMENTAL SETUP CONTROLLER DESIGN Feedback controller design Feedforward controller design EXPERIMENTAL TESTS Feedforward tracking control Feedback tracking control Hybrid tracking control CONCLUSION
机译:在本文中,建立了基于椭圆的数学模型来表征压电致动器中与速率相关的磁滞。基于提出的模型,构造了扩展的输入空间,通过多输入单输出(MISO)映射Γ:R2 →R来描述多值滞后函数H [u](t)。随后,提出了逆MISO映射Γ-1(H [u](t),H [](t); u(t))进行实时磁滞补偿的方法。在控制器设计中,将基于模型的前馈控制器和比例积分微分(PID)反馈回路相结合的混合控制策略用于压电致动器的高精度和高速跟踪控制。开发了实时前馈控制器以基于逆滞后模型消除速率相关的滞后,而PID控制器用于补偿蠕变,建模误差和参数不确定性。最后,进行了有无磁滞补偿的实验,并对实验结果进行了比较。实验结果表明,前馈路径中的磁滞补偿可以减少高达88%的磁滞引起的误差,并且在高速跟踪控制应用(例如,均方根)中,混合控制器的跟踪性能大大提高。在100 Hz的输入频率下,平方跟踪误差仅减小到位移范围的0.34%。 ©2010美国物理研究所文章大纲简介基于椭圆的滞回模型实验设置控制器设计反馈控制器设计前馈控制器设计实验测试前馈跟踪控制反馈跟踪控制混合跟踪控制结论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号