...
首页> 外文期刊>Review of Scientific Instruments >Absolute calibration of LIDAR Thomson scattering systems by rotational Raman scattering
【24h】

Absolute calibration of LIDAR Thomson scattering systems by rotational Raman scattering

机译:利用旋转拉曼散射对LIDAR Thomson散射系统进行绝对校准

获取原文
获取原文并翻译 | 示例

摘要

Absolute calibration of LIDAR Thomson scattering systems on large fusion devices may be achieved using rotational Raman scattering. The choice of calibrating gas molecule presents different options and design trade-offs and is likely to be strongly dependent on the laser wavelength selected. Raman scattering of hydrogenic molecules produces a very broad spectrum, however, with far fewer scattered photons than scattering from nitrogen or oxygen at the same gas pressure. Lower laser wavelengths have the advantage that the Raman cross section increases, σRaman∝1/λ04, but the disadvantage that the spectral width of the scattered spectrum decreases, ΔλRaman∝λ02. This narrower spectrum makes measurement closer to the laser wavelength necessary. The design of the calibration technique presents a number of challenges. Some of these challenges are generic to all Thomson scattering systems. These include detecting a sufficient number of photoelectrons and designing filters that measure close to the laser wavelength while simultaneously achieving adequate blocking of the laser wavelength. An issue specific to LIDAR systems arises since the collection optics operates over a wide range of depth of field. This wide depth of field has the effect of changing the angle of light incident on the optical interference filter with plasma major radius. The angular distribution then determines the effective spectral transmission function of the interference filter and hence impacts on the accuracy of the absolute calibration. One method that can be used to increase absolute calibration accuracy is collecting both Stokes and anti-Stokes lines with optical filter transmission bands specifically designed to reduce systematic uncertainty. © 2010 American Institute of Physics Article Outline INTRODUCTION LASER SYSTEMS RAMAN CALIBRATION LASER WAVELENGTH RAMAN CALIBRATION GAS FILTER WAVELENGTHS FOR RAMAN SCATTERING WAVELENGTH SHIFT DUE TO ANGLE OF LIGHT Angular distribution of light on filters Impact of angular shift on filter transfer functions RAMAN CALIBRATION IN N2 AT 1064 nm COMBINATION OF STOKES AND ANTI-STOKES RAMAN CALIBRATION AT 532 nm TEMPERATURE VARIATION CONCLUSIONS
机译:使用旋转拉曼散射可以实现大型聚变设备上LIDAR Thomson散射系统的绝对校准。校准气体分子的选择提供了不同的选择和设计折衷,并且很可能很大程度上取决于所选的激光波长。氢分子的拉曼散射产生非常宽的光谱,但是,与在相同气压下从氮或氧的散射相比,散射光子要少得多。较低的激光波长的优点是拉曼截面增大,σRaman ∝1 /λ04,但缺点是散射光谱的谱宽减小,ΔλRamanλλ02。这种较窄的光谱使测量更接近必需的激光波长。校准技术的设计提出了许多挑战。这些挑战中的某些挑战是所有汤姆森散射系统所通用的。这些包括检测足够数量的光电子,以及设计测量接近激光波长的滤光片,同时实现对激光波长的充分阻挡。由于收集光学器件在很宽的景深范围内运行,因此会出现LIDAR系统特有的问题。这种宽的景深具有改变入射到具有等离子主半径的光学干涉滤光片上的光的角度的作用。角度分布然后确定干涉滤光片的有效光谱透射函数,并因此影响绝对校准的准确性。可以用来提高绝对校准精度的一种方法是同时收集斯托克斯线和反斯托克斯线,并采用专门设计来减少系统不确定性的光学滤波器传输带。 ©2010美国物理研究所文章概述简介激光系统拉曼校准激光波长拉曼校准气体滤光片的波长由于光的角度而产生的漂移角的角度分布对滤光片的影响角位移对滤光片传递函数的影响拉曼校准N2 sub>在1064 nm处,斯托克斯和反斯托克斯拉曼标定在532 nm温度变化下的组合结论

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号