首页> 外文期刊>Research Disclosure >TEMPERATURE MEASUREMENT OF OPTICAL ELEMENTS IN AN OPTICAL APPARATUS
【24h】

TEMPERATURE MEASUREMENT OF OPTICAL ELEMENTS IN AN OPTICAL APPARATUS

机译:光学设备中光学元件的温度测量

获取原文
获取原文并翻译 | 示例
           

摘要

According to a first aspect of the disclosure, there is provided an optical apparatus comprising: an optical element having a reflective surface for reflecting incident radiation in a beam path; and at least one sensor configured to sense radiation corresponding to a temperature of a respective portion of a backside surface of the optical element. Advantageously, the at least one sensor is configured to sense radiation, rather than conducted heat as is the case in prior art optical apparatus, as described in more detail below. That is, the at least one sensor is provided in a contactless arrangement with the optical element wherein the at least one sensor, or at least a radiation-sensitive portion of the at least one sensor, is not in physical contact with the respective portion of the backside surface of the optical element. Advantageously, by using such a contacting arrangement, there is no need to adhere the at least one sensor to the backside surface of the optical element, and therefore no SFD effects are induced by thermomechanical stresses or stresses caused by aging of an adhesive. Furthermore, advantageously by using such a contactless arrangement, the optical apparatus may be less likely to be damaged and/or require maintenance, and hence the optical apparatus may have an increased lifetime. A gap may be provided between the at least one sensor and the respective portion of the backside surface of the optical element. The portion of the backside surface may be in a cavity formed in a backside of the optical element. Furthermore, because of the contactless arrangement, such cavities can be formed to extend much closer to the reflective surface of the optical element without incurring an increase in SFD effects than in existing solutions, such as those described below with reference to Figures 3 and 4, wherein sensors are adhered to a backside surface of the optical element. Furthermore, since such a contactless arrangement may lead to a reduction in SFD effects, a greater quantity of cavities and associated sensors may be implemented, thereby enabling a more complete, precise and responsive determination and control of a temperature of the reflective surface of the optical element by a MPHS. The optical apparatus may comprise at least one through-passage connecting a void defined by the gap to an area outside the cavity. The cavity may be formed such that the portion of the backside surface is less than 5 millimeters from the reflective surface. The at least one sensor may comprise a pyrometer configured to sense infrared radiation radiated from the respective portion of the backside surface of the optical element. The optical apparatus may comprise a high-emissivity coating formed on the portion of the backside surface, The optical apparatus may comprise at least one coating formed on the respective portion of the backside surface. The at least one coating may be configured to have temperature-dependent optical properties. The at least one coating may comprise a thermochromic coating. The at least one coating may comprise a plurality of coatings configured RS an interference filter and/or a grating having temperature-dependent optical properties. The grating may be a volume Bragg grating. The optical apparatus may comprise at least one radiation-emitting device configured to emit radiation toward the at least one coating. The at least one sensor may be configured to .sense radiation emitted by the radiation- emitting device and reflected from the at least one coating and/or from the backside surface of the optical element. The optical apparatus may comprise a temperature controller configured to use a signal from the at least one sensor to control a temperature of the optical element. The optical apparatus may comprise a plurality of sensors, wherein the backside surface of the optical element may comprise a plurality of cavities, and each cavity may have an associated sensor configured to sense radiation corresponding to a temperature of a portion of the backside surface of the optical element within the cavity. According to a second aspect of the disclosure, there is provided an optical system comprising at least one optical apparatus according to the first aspect. The optical system may be configured as a projection system for a lithographic apparatus. The optical system may be configured as an illumination system for a lithographic apparatus. According to a third aspect of the disclosure, there is provided a lithographic apparatus comprising the optical system according to the second aspect. According to a fourth aspect of the disclosure, there is provided a method of controlling a temperature of a reflective surface of an optical element in a lithographic apparatus, the method comprising: configuring at least one sensor to sense radiation corresponding to a temperature of a portion of a backside surface of the optical element; and using a signal provided by the sensor to configure a temperat
机译:根据本公开的第一方面,提供了一种光学设备,包括:光学元件,其具有反射表面,用于反射光束路径中的入射辐射;并且至少一个传感器配置成检测对应于光学元件的背面表面的各个部分的温度的辐射。有利地,所述至少一个传感器被配置为读取辐射,而不是在现有技术光学设备中的情况下进行热量,如下面更详细描述的。也就是说,至少一个传感器以非接触式布置提供,其中至少一个传感器或至少一个传感器的至少一个传感器或至少一个传感器的辐射敏感部分不与相应部分的物理接触光学元件的后侧表面。有利地,通过使用这种接触装置,不需要将至少一个传感器粘附到光学元件的后侧表面,因此没有通过粘合剂老化引起的热机械应力或应力诱导SFD效应。此外,有利地通过使用这种非接触装置,光学设备可以不太可能被损坏和/或需要维护,因此光学设备可以具有增加的寿命。可以在光学元件的后侧表面的至少一个传感器和各个部分之间提供间隙。背面表面的部分可以是形成在光学元件的背面的腔中。此外,由于非接触装置,可以形成这种腔以延伸到光学元件的反射表面更靠近光学元件的反射表面,而不会产生的SFD效应增加,例如参考图3和4所描述的那些。其中传感器粘附到光学元件的背面。此外,由于这种非接触式装置可能导致SFD效果的降低,因此可以实现更大量的空腔和相关的传感器,从而能够更完整,精确和响应地确定和控制光学的反射表面的温度。用MPH的元素。光学设备可包括至少一个通孔,将由间隙限定的空隙连接到腔外的区域。可以形成腔,使得背面表面的部分距离反射表面小于5毫米。至少一个传感器可包括高温计,该高温计被配置为检测从光学元件的背面表面的各个部分辐射的红外辐射。光学装置可包括形成在背面表面的部分上的高发射率涂层,光学设备可包括在背面表面的相应部分上形成至少一个涂层。至少一个涂层可以配置成具有温度依赖性的光学性质。至少一种涂层可包含热致铬涂层。所述至少一个涂层可包括多个涂层,所述多个涂层构造了RS干涉滤光器和/或具有温度依赖性光学性质的光栅。光栅可以是体积布拉格光栅。光学设备可包括至少一个辐射发射装置,其被配置为向至少一个涂层发射辐射。至少一个传感器可以配置为。由辐射发射器件发射并由至少一个涂层和/或从光学元件的后侧表面反射的张辐射。光学设备可以包括温度控制器,该温度控制器被配置为使用来自至少一个传感器的信号来控制光学元件的温度。光学设备可包括多个传感器,其中光学元件的后侧表面可包括多个空腔,并且每个腔可以具有配置成读取对应于背面表面的一部分的温度的辐射的相关传感器。腔内的光学元件。根据本公开的第二方面,提供了一种包括根据第一方面的至少一个光学设备的光学系统。光学系统可以被配置为用于光刻设备的投影系统。光学系统可以被配置为用于光刻设备的照明系统。根据本公开的第三方面,提供了一种包括根据第二方面的光学系统的光刻设备。根据本公开的第四方面,提供了一种控制光学装置中光学元件的反射表面的温度的方法,该方法包括:配置至少一个传感器以检测对应于部分的温度的辐射光学元件的背面表面;并使用传感器提供的信号来配置温度

著录项

  • 来源
    《Research Disclosure》 |2021年第686期|1979-1980|共2页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号