首页> 外文期刊>Rendiconti di Matematica e delle sue Applicazioni >Optimal and approximate control of finite-difference approximation schemes for the 1D wave equation
【24h】

Optimal and approximate control of finite-difference approximation schemes for the 1D wave equation

机译:一维波动方程有限差分近似格式的最优和近似控制

获取原文
获取原文并翻译 | 示例
           

摘要

We address the problem of control of numerical approximation schemes for the wave equation. More precisely, we analyze whether the controls of numerical approximation schemes converge to the control of the continuous wave equation as the mesh-size tends to zero. Recently, it has been shown that, in the context of exact control, i.e., when the control is required to drive the solution to a final target exactly, due to high frequency spurious numerical solutions, convergent numerical schemes may lead to unstable approximations of the control. In other words, the classical convergence property of numerical schemes does not guarantee a stable and convergent approximation of controls. In this article we address the same problem in the context of optimal and approximate control in which the final requirement of achieving the target exactly is relaxed. We prove that, for those relaxed control problems, convergence (as the mesh-size tends to zero) holds. In particular, in the context of approximate control we show that, if the final condition is relaxed so that the final state is required to reach and ε-neighborhood of the final target with ε > 0, then the controls of numerical schemes (the so-called ε-controls) converge to the ε-controls of the wave equation. We also show that this result fails to be true in several space dimensions. Although convergence is proved in the context of these relaxed control problems, the fact that instabilities occur at the level of exact control have to be considered as a serious warning in the sense that instabilities may ultimately arise if the control requirement is reinforced to exactly achieve the final target, i.e., as ε is taken smaller and smaller.
机译:我们解决了波动方程的数值逼近方案的控制问题。更准确地说,当网格尺寸趋于零时,我们分析数值逼近方案的控制是否收敛于连续波方程的控制。最近,已经表明,在精确控制的情况下,即当需要控制以将解决方案精确地驱动到最终目标时,由于高频杂散数值解,会聚的数值方案可能导致模型的不稳定近似。控制。换句话说,数值方案的经典收敛性不能保证控制的稳定和收敛近似。在本文中,我们在最佳和近似控制的情况下解决了相同的问题,在该控制中,完全实现目标的最终要求得到了放松。我们证明,对于那些松弛的控制问题,收敛(随着网格大小趋于零)成立。特别是,在近似控制的情况下,我们表明,如果放松了最终条件,则要求达到最终状态并且ε> 0时达到了最终目标的ε邻域,则可以采用数值方案的控制(因此(称为ε-控制)收敛到波动方程的ε-控制。我们还表明,该结果在多个空间维度上均不成立。尽管已在这些宽松的控制问题的背景下证明了收敛性,但必须将精确控制级别的不稳定性这一事实视为严重警告,因为如果加强控制要求以完全实现控制要求,最终可能会出现不稳定性。最终目标,即随着ε越来越小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号