首页> 外文期刊>Renewable & Sustainable Energy Reviews >Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures
【24h】

Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures

机译:基于浓缩和非浓缩技术的光伏/热系统:低,中和高温下的工作流体

获取原文
获取原文并翻译 | 示例
           

摘要

The present article provides an overview about photovoltaic/thermal systems categorised by the temperature of the working fluid: Low-temperature (lower than 60 degrees C), medium-temperature (between 60 and 90 degrees C) and high-temperature (higher than 90 degrees C). Concerning photovoltaic/thermal-air systems for low-temperature use, the majority of studies involve building-integrated non-concentrating systems with phase change materials and working-fluid temperatures at around 30-55 degrees C. Concerning low-temperature photovoltaic/thermal-water systems, a large number of studies are about non-concentrating configurations appropriate for building-integrated and, in general, domestic applications with working fluids at approximately 50-60 degrees C. Regarding non-concentrating photovoltaic/thermal systems for medium-temperature use, a large number of references are appropriate for industrial and domestic applications (working fluids: air; water) with around 60-70 degrees C working-fluid temperatures. The literature review about medium-temperature concentrating photovoltaic/thermal systems shows that the majority of investigations concern photovoltaic/thermal-water systems with concentration ratios up to 190X and working fluids at approximately 62-90 degrees C, appropriate for domestic and water-desalination applications. As for high-temperature concentrating photovoltaic/thermal systems, most of them have concentration ratios up to 1000X, involve parabolic concentrators and use water (as the working fluid) at around 100-250 degrees C. Moreover, in the field of high-temperature photovoltaic/thermal systems, most of the configurations are appropriate for building and industrial applications, and consist of triple-junction or silicon-based photovoltaic/thermal cells. In light of the issues mentioned above, a critical discussion and key challenges (in terms of materials, efficiencies, technologies, etc.) are presented.
机译:概述了由工作流体温度分类的光伏/热系统:低温(低于60℃),中温(60至90℃)和高温(高于90) C)。关于低温使用的光伏/热空气系统,大多数研究涉及构建集成的非浓缩系统,其中相变材料和工作流体温度约为30-55摄氏度。关于低温光伏/热 - 水系统,大量研究是适合于建筑物整合的非浓缩配置,并且通常是具有在大约50-60摄氏度的工作流体的国内应用。关于中温使用的非浓缩光伏/热系统,大量参考文献适用于工业和国内应用(工作流体:空气;水),其工作流体温度约为60-70度。关于中温浓缩光伏/热系统的文献综述表明,大多数研究涉及光伏/热水系统,浓度比率高达190倍,工作流体约为62-90℃,适用于国内和水脱盐应用。对于高温浓缩光伏/热系统,其中大多数具有高达1000倍的浓度比率,涉及抛物线浓缩器,并且在高温领域中使用水(作为工作流体)约100-250℃。此外,在高温领域光伏/热系统,大部分配置适用于建筑和工业应用,包括三轴或硅基光伏/热电池。根据上述问题,提出了关键讨论和关键挑战(在材料,效率,技术等方面)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号