首页> 外文期刊>Renewable energy >Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)
【24h】

Energy-exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)

机译:太阳升力的Kalina循环系统11(KCS-11)的能量-能量分析和优化

获取原文
获取原文并翻译 | 示例
       

摘要

Energy-exergy analysis and parameter design optimization of the KCS-11 solar system with an auxiliary superheater are studied in low-grade thermal energy conversion (LTEC). Firstly, from a thermodynamics point of view, the corresponding calculation model is built to solve the system state points as well as the exergy input/output/loss for each system component. And then, according to the characteristics of the KCS-11 solar system, the verification items are given to verify the correctness of the calculation model. Afterward the model is proved to be correct by sampling check a set of calculation data. On that basis, the corresponding parameter design optimization and system performance analysis are carried out from the viewpoint of the maximization of the exergy output in KCS-11 solar system at a certain scale. Results show that the mass flow rates of working fluid and solar collector subcycle and also ammonia mass fraction are important system operation parameters that should be optimized to deduce the irreversible behavior of the solar system for producing more useful energy. Meanwhile, the heat-transfer rate distribution ratio of the superheater should be large enough to ensure that the expanding vapor in the turbine is superheated. Finally, an optimization calculation case is designed for illustration by using the monthly mean solar radiation statistics in Kumejima Island of Japan. In this case, the maximum generated power is 491 kW showing 35.6%exergy efficiency and 6.48%energy efficiency of the system for the month of August. The size of the system in terms of power generated of each major equipment is listed as follows: solar evaporator (370 kW), superheater (106 kW), condenser (298 kW), turbine (491 kW), separator (43 kW), absorber (37 kW), pump (8 kW), regenerator (38 kW), and diffuser (17 kW). And the main system exergy losses are associated with internal consumptions of exergy in turbine (92 kW) and condenser (97 kW) due to irreversibilities. In this way, the maximum annual power generation of the KCS-11 solar system is about 553,520 kWh.
机译:在低等级热能转换(LTEC)中研究了带有辅助过热器的KCS-11太阳系的能量-能量分析和参数设计优化。首先,从热力学的角度出发,建立相应的计算模型来求解系统状态点以及每个系统组件的火用输入/输出/损耗。然后,根据KCS-11太阳系的特点,给出了验证项目,以验证计算模型的正确性。之后,通过抽样检查一组计算数据证明该模型是正确的。在此基础上,从一定程度上最大化KCS-11太阳系输出能值的角度,进行了相应的参数设计优化和系统性能分析。结果表明,工作流体和太阳能集热器子循环的质量流率以及氨的质量分数是重要的系统运行参数,应对其进行优化以推断出太阳能系统的不可逆行为,以产生更多有用的能量。同时,过热器的传热率分配比应足够大,以确保涡轮机中膨胀的蒸气过热。最后,利用日本久米岛的月平均太阳辐射统计数据,设计了一个优化计算案例进行说明。在这种情况下,最大发电功率为491 kW,显示8月份系统的能源效率为35.6%,能源效率为6.48%。按每台主要设备产生的功率计算的系统规模如下:太阳能蒸发器(370 kW),过热器(106 kW),冷凝器(298 kW),涡轮机(491 kW),分离器(43 kW),吸收器(37 kW),泵(8 kW),再生器(38 kW)和扩散器(17 kW)。由于不可逆性,主系统的(火用)损失与涡轮(92 kW)和冷凝器(97 kW)的内部火用消耗有关。这样,KCS-11太阳系的最大年发电量约为553,520 kWh。

著录项

  • 来源
    《Renewable energy》 |2014年第6期|268-279|共12页
  • 作者单位

    Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kyoto 603-8577, Japan;

    College of Policy Science, Ritsumeikan University, Kyoto 603-8577, Japan;

    Institute of Ocean Energy, Saga University, 1-Honjo machi, Saga 840-8502, Japan;

    College of Policy Science, Ritsumeikan University, Kyoto 603-8577, Japan;

    Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kyoto 603-8577, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    KCS-11 solar system; Energy analysis; Exergy analysis; Optimization design; Power generation;

    机译:KCS-11太阳系;能量分析;火用分析;优化设计;发电量;
  • 入库时间 2022-08-18 00:25:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号