...
首页> 外文期刊>Radio Science >Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements
【24h】

Particle-in-cell modeling of spacecraft-plasma interaction effects on double-probe electric field measurements

机译:航天器-等离子体相互作用对双探针电场测量的粒子模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The double-probe technique, commonly used for electric field measurements in magnetospheric plasmas, is susceptible to environmental perturbations caused by spacecraft-plasma interactions. To better model the interactions, we have extended the existing particle-in-cell simulation technique so that it accepts very small spacecraft structures, such as thin wire booms, by incorporating an accurate potential field solution calculated based on the boundary element method. This immersed boundary element approach is effective for quantifying the impact of geometrically small but electrically large spacecraft elements on the formation of sheaths or wakes. The developed model is applied to the wake environment near a Cluster satellite for three distinctive plasma conditions: the solar wind, the tail lobe, and just outside the plasmapause. The simulations predict the magnitudes and waveforms of wake-derived spurious electric fields, and these are in good agreement with in situ observations. The results also reveal the detailed structure of potential around the double probes. It shows that any probes hardly experience a negative wake potential in their orbit, and instead, they experience an unbalanced drop rate of a large potential hill that is created by the spacecraft and boom bodies. As a by-product of the simulations, we also found a photoelectron short-circuiting effect that is analogous to the well-known short-circuiting effect due to the booms of a double-probe instrument. The effect is sustained by asymmetric photoelectron distributions that cancel out the external electric field.
机译:双探针技术通常用于磁层等离子体中的电场测量,易受航天器-等离子体相互作用引起的环境扰动的影响。为了更好地对相互作用进行建模,我们扩展了现有的单元格内粒子模拟技术,使其通过结合基于边界元方法计算出的精确势场解,从而接受非常小的航天器结构,例如细金属丝吊杆。这种浸入式边界元素方法可有效地量化几何尺寸较小但在电气上较大的航天器元素对鞘或尾流形成的影响。所开发的模型适用于星团卫星附近的尾迹环境,用于三种独特的等离子体条件:太阳风,尾叶以及等离子体暂停的外部。该模拟预测了唤醒衍生的杂散电场的大小和波形,这些与现场观察非常吻合。结果还揭示了双探针周围电位的详细结构。它表明,任何探测器在其轨道上几乎都不会遇到负的唤醒潜能,相反,它们会经历由航天器和吊杆体产生的大潜在潜山的失衡下降率。作为模拟的副产品,我们还发现了光电子短路效应,该效应类似于双探针仪器的动臂引起的众所周知的短路效应。通过抵消外部电场的不对称光电子分布来维持这种效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号