首页> 外文期刊>Progress in Oceanography >Dynamics of the Atlantic meridional overturning circulation. Part 2: Forcing by winds and buoyancy
【24h】

Dynamics of the Atlantic meridional overturning circulation. Part 2: Forcing by winds and buoyancy

机译:大西洋子午翻转环流的动力学。第2部分:强风和浮力

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, Schloesser et al. (2012) explored the dynamics of the descending branch of meridional overturning circulations (MOCs), by obtaining analytic solutions to a variable-density, 2-layer model (VLOM) forced only by a surface buoyancy flux. Key processes involved are the poleward thickening of the upper layer along the eastern boundary due to Kelvin-wave adjustments, the westward propagation of that coastal structure by Rossby waves, and their damping by mixing; the resulting zonal pressure gradient causes the surface MOC branch to converge into the northern basin near the eastern boundary.In this paper, we extend the Schloesser et al. (2012) study to include forcing by a zonal wind stress τ~x(y). Much of the paper is devoted to the derivation and analysis of analytic solutions to VLOM; for validation, we also report corresponding numerical solutions to an ocean general circulation model (OGCM). Solutions are obtained in a flat-bottom, rectangular basin confined to the northern hemisphere. The buoyancy forcing relaxes upper-ocean density to a prescribed profile ρ~*(y) that increases polewards until it becomes as large as the deep-ocean density at latitude y_2; north of y_2, then, the ocean is homogeneous (a 1 -layer system). The wind stress τ~x drives Subtropical and Subpolar Gyres, and in our standard solution the latter extends north of y_2. Vertical diffusion is not included in VLOM (minimized in the OGCM); consequently, the MOC is not closed by upwelling associated with interior diffusion, but rather by flow through the southern boundary of the basin (into a southern-boundary sponge layer in the OGCM), and solutions are uniquely determined by specifying the strength of that flow or the thermocline depth along the tropical eastern boundary. Solutions'forced by τ~x and ρ~* differ markedly from those forced only by ρ~* because water flows across y_2 throughout the interior of the Subpolar Gyre, not just near the eastern boundary. In some of our solutions, the strength of the MOC's descending branch is determined entirely by this wind-driven mechanism, whereas in others it is also affected by Rossby-wave damping near the eastern boundary. Upwelling can occur in the interior of the Subpolar Gyre and in the western-boundary layer, providing "shortcuts" for the overturning circulation; consequently, there are different rates for the convergence of upper-layer water near y_2, Μ_n, and the export of deep water south of the Subpolar Gyre, M, the latter being a better measure of large-scale MOC strength. When western-boundary upwelling occurs in our solutions, M is independent of the diapycnal processes in the subpolar ocean.
机译:最近,Schloesser等。 (2012)探索了子午翻转循环(MOCs)下降分支的动力学,方法是获得仅由表面浮力推动的可变密度两层模型(VLOM)的解析解。涉及的关键过程是:通过开尔文波调整使沿东部边界的上极层向极增厚,该海岸结构由罗斯比波向西传播以及它们的混合阻尼作用;由此产生的纬向压力梯度使地表MOC分支收敛到东部边界附近的北部盆地。本文扩展了Schloesser等人。 (2012年)的研究包括区域风应力τ〜x(y)的强迫作用。本文大部分致力于VLOM分析解决方案的推导和分析。为了进行验证,我们还报告了海洋总环流模型(OGCM)的相应数值解。解决方案是在局限于北半球的平底矩形盆地中获得的。浮力强迫使上层海洋密度松弛到规定的轮廓ρ〜*(y),并向极点增加,直到达到纬度y_2处的深层海洋密度为止。那么,y_2以北,海洋是均匀的(1层系统)。风应力τ〜x驱动亚热带和亚极地涡流,在我们的标准解决方案中,后者延伸到y_2以北。垂直扩散不包括在VLOM中(在OGCM中已最小化);因此,MOC不会因与内部扩散相关的上升流而闭合,而是通过流经盆地南部边界(进入OGCM的南边界海绵层)的流动来封闭,而解决方案是通过指定该流动的强度来唯一确定的或沿着热带东部边界的温跃层深度。由τ〜x和ρ〜*强迫的解与仅由ρ〜*强迫的解明显不同,这是因为水流过y_2遍及整个亚极涡流内部,而不仅仅是在东部边界附近。在我们的某些解决方案中,MOC下降分支的强度完全取决于这种风力驱动机制,而在其他解决方案中,它也受到东部边界附近的Rossby波衰减的影响。上升流可发生在极地回旋的内部和西边界层,为倾覆环流提供了“捷径”。因此,对于y_2附近的上层水,M_n,以及次极回旋带M以南的深水的出口,收敛速度不同,后者是大规模MOC强度的较好度量。当在我们的解决方案中发生西边界上升流时,M独立于次极海中的渗流过程。

著录项

  • 来源
    《Progress in Oceanography》 |2014年第1期|154-176|共23页
  • 作者单位

    International Pacific Research Center, University of Hawaii, Honolulu, HI, United States;

    International Pacific Research Center, University of Hawaii, Honolulu, HI, United States;

    International Pacific Research Center, University of Hawaii, Honolulu, HI, United States;

    International Pacific Research Center, University of Hawaii, Honolulu, HI, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号