...
首页> 外文期刊>Progress in Nuclear Energy >Nuclear data uncertainty propagation and modeling uncertainty impact evaluation in neutronics core simulation
【24h】

Nuclear data uncertainty propagation and modeling uncertainty impact evaluation in neutronics core simulation

机译:核数据不确定性传播和建模中子核模拟中的不确定性影响评价

获取原文
获取原文并翻译 | 示例
           

摘要

Uncertainty analysis is a critical requirement in reactor simulation as it is used to quantify the reliability of best-estimate calculation. A comprehensive uncertainty analysis should characterize all sources of uncertainties in a computationally-feasible and scientifically-defendable manner. This manuscript employs a well-established reduced order modeling (ROM) based uncertainty quantification methodology to propagate uncertainties throughout neutronic calculations. ROM relies on recent advances in randomized data mining techniques applied to large data streams. In our proposed implementation, the nuclear data uncertainties are first propagated from multi-group level through lattice physics calculation to generate few-group parameter uncertainties, described using a vector of mean values and a covariance matrix. Employing an ROM-based compression of the covariance matrix, the few-group uncertainties are then propagated through downstream core simulation in a computationally efficient manner. This straightforward approach, albeit efficient as compared to brute force forward and/ or adjoint-based methods, often employs a number of assumptions that have been unquestioned in the literature of neutronic uncertainty analysis. This manuscript argues that these assumptions could introduce another source of uncertainty referred to as modeling uncertainties, whose magnitude needs to be quantified in tandem with nuclear data uncertainties. Thus, our primary goal is to explore the interactions between these two uncertainty sources in order to assess whether modeling uncertainties have an impact on parameter uncertainties. To explore this endeavor, the impact of a number of modeling assumptions on core attributes uncertainties is quantified. The study employs a CANDU reactor model, with Serpent and NEWT as lattice physics solvers and NESTLE-C as core simulator. The modeling assumptions investigated include those related with the uncertainty propagation method employed, e.g., deterministic vs. stochastic, the few-group energy structure employed to represent the cross-sections, the resonance treatment in lattice physics calculation, the reference values for the cross-section, and the number of samples employed to render ROM compression. Results indicate that some of the modeling assumptions could have a non-negligible impact on the core responses propagated uncertainties, highlighting the need for a more comprehensive approach to combine parameter and modeling uncertainties.
机译:不确定性分析是反应堆仿真中的关键要求,因为它用于量化最佳估计计算的可靠性。全面的不确定性分析应以计算可行和科学可取的方式表征所有不确定性源。该稿件采用了基于完善的减少的顺序建模(ROM)的不确定性量化方法,以在整个中性计算中传播不确定性。 ROM依赖于应用于大数据流的随机数据挖掘技术的最近进步。在我们拟议的实施中,核数据不确定性首先通过晶格物理计算从多组水平传播,以产生利用平均值和协方差矩阵的向量和协方差矩阵描述的几组参数不确定性。采用基于ROM的COVARIANCE矩阵的压缩,然后以计算有效的方式通过下游核心模拟传播几组不确定性。这种直接的方法,尽管与蛮力前进和/或基于伴随的方法相比,但是通常采用许多假设在中性不确定性分析的文献中被毫无疑问。本手稿争辩说,这些假设可以引入另一种不确定性的来源,称为建模不确定性,其幅度需要在核数据不确定性串联中量化。因此,我们的主要目标是探讨这两个不确定性来源之间的相互作用,以评估建模不确定性是否对参数不确定性产生影响。为了探索这一努力,量化了许多建模假设对核心属性的影响。该研究采用Candu Reactor模型,蛇和纽特作为晶格物理求解器和雀巢-C作为核心模拟器。研究的建模假设包括与所采用的不确定性传播方法相关的那些,例如确定性与随机,用于表示横截面的少数群能结构,晶格物理学计算中的共振处理,交叉的参考值部分,用于呈现ROM压缩的样本数量。结果表明,一些建模假设可能对核心响应产生不可忽略的影响传播的不确定性,突出了更全面的方法来组合参数和建模不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号