首页> 外文期刊>Progress in Nuclear Energy >A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry
【24h】

A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry

机译:二维笛卡尔几何中一速度离散坐标特征值问题的复合空间网格谱格林函数方法

获取原文
获取原文并翻译 | 示例
           

摘要

Spectral Green's function nodal methods (SGF) are well established as a class of coarse mesh methods. For this reason, they are widely used in the solution of neutron transport problems in discrete ordinates formulation (S-N). When compared with fine mesh methods, SGF are considered efficient, as solutions are as accurate as, using a smaller number of spatial nodes, reducing floating point operations. However, the development of spectral-nodal methods for X-Y Cartesian geometries, has been limited due to (a) difficulties in implementing efficient computational algorithms and, (b) high algebraic and computational costs. This is because these methods need to use NBI-type (One-Node Block Inversion) sweep schemes. The composite spatial grid methods were developed to overcome these challenges. In this work, we describe a composite spatial grid spectral-nodal method to solve one-speed discrete ordinate eigenvalue problems in X-Y Cartesian geometry with isotropic scattering. The discretization is developed into two stages and two 1D problems coupled by transverse leakage terms in each domain region are obtained. In order to converge toward the numerical solution, we used an alternating-direction iterative technique and a modified source iteration sweep scheme. Also, we used the conventional power method to estimate the problem's dominant eigenvalue. Numerical results for benchmark problems are presented to illustrate the accuracy and performance of the developed method. This approach offers more accurate and efficient results for integral quantities if compared with others SGF methods.
机译:光谱格林函数节点法(SGF)已被很好地确立为一类粗网格法。因此,它们被广泛用于离散纵坐标公式(S-N)中的中子输运问题的解决方案中。与精细网格方法相比,SGF被认为是有效的,因为解决方案与使用较少数量的空间节点一样精确,从而减少了浮点运算。然而,由于(a)难以实现有效的计算算法,以及(b)高代数和计算成本,用于X-Y笛卡尔几何的光谱结方法的发展受到限制。这是因为这些方法需要使用NBI类型(单节点块反转)扫描方案。为了克服这些挑战,开发了复合空间网格方法。在这项工作中,我们描述了一种复合空间网格谱节点方法,以解决各向同性散射的X-Y笛卡尔几何中的单速离散坐标特征值问题。离散化发展为两个阶段,并在每个域区域中获得了两个由横向泄漏项耦合的一维问题。为了收敛到数值解,我们使用了交替方向迭代技术和改进的源迭代扫描方案。同样,我们使用常规幂方法来估计问题的主导特征值。给出了基准问题的数值结果,以说明所开发方法的准确性和性能。与其他SGF方法相比,此方法可提供更精确,更有效的积分结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号