首页> 外文期刊>Progress in Aerospace Sciences >A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations
【24h】

A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations

机译:近距离操作的合作和不合作航天器姿态确定技术综述

获取原文
获取原文并翻译 | 示例
       

摘要

The capability of an active spacecraft to accurately estimate its relative position and attitude (pose) with respect to an active/inactive, artificialatural space object (target) orbiting in close-proximity is required to carry out various activities like formation flying, on-orbit servicing, active debris removal, and space exploration. According to the specific mission scenario, the pose determination task involves both theoretical and technological challenges related to the search for the most suitable algorithmic solution and sensor architecture, respectively. As regards the latter aspect, electro-optical sensors represent the best option as their use is compatible with mass and power limitation of micro and small satellites, and their measurements can be processed to estimate all the pose parameters. Overall, the degree of complexity of the challenges related to pose determination largely varies depending on the nature of the targets, which may be actively/passively cooperative, uncooperative but known, or uncooperative and unknown space objects. In this respect, while cooperative pose determination has been successfully demonstrated in orbit, the uncooperative case is still under study by universities, research centers, space agencies and private companies. However, in both the cases, the demand for space applications involving relative navigation maneuvers, also in close-proximity, for which pose determination capabilities are mandatory, is significantly increasing. in this framework, a review of state-of-the-art techniques and algorithms developed in the last decades for cooperative and uncooperative pose determination by processing data provided by electrooptical sensors is herein presented. Specifically, their main advantages and drawbacks in terms of achieved performance, computational complexity, and sensitivity to variability of pose and target geometry, are highlighted.
机译:主动航天器必须具有准确估计其相对于近距离运动的主动/非主动,人造/自然空间物体(目标)的相对位置和姿态(姿势)的能力,以执行各种活动,例如编队飞行, -轨道维修,主动清除碎片和进行太空探索。根据特定的任务场景,姿势确定任务涉及与分别寻找最合适的算法解决方案和传感器架构有关的理论和技术挑战。关于后一个方面,电光传感器代表了最佳选择,因为它们的使用与微型和小型卫星的质量和功率限制兼容,并且可以对其测量进行处理以估计所有姿态参数。总体而言,与姿势确定有关的挑战的复杂程度在很大程度上取决于目标的性质,这些目标可能是主动/被动合作,不合作但已知,或者不合作和未知的空间物体。在这方面,尽管合作姿态确定已在轨道上得到成功证明,但不合作的情况仍在大学,研究中心,航天机构和私营公司的研究中。然而,在这两种情况下,对于涉及相对导航操纵的空间应用的需求,以及在近距离中都必须具有姿势确定能力的需求,这种需求显着增加。在此框架中,本文介绍了过去几十年来开发的用于通过处理电光传感器提供的数据来确定合作和不合作姿态的最新技术和算法。具体而言,突出了它们在实现的性能,计算复杂性以及对姿势和目标几何形状的可变性的敏感性方面的主要优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号