首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Reconstitution of recombination-dependent DNA synthesis in herpes simplex virus 1.
【24h】

Reconstitution of recombination-dependent DNA synthesis in herpes simplex virus 1.

机译:重组单纯疱疹病毒1。

获取原文
获取原文并翻译 | 示例
       

摘要

The repair of double-strand DNA breaks by homologous recombination is essential for the maintenance of genome stability. In herpes simplex virus 1, double-strand DNA breaks may arise as a consequence of replication fork collapse at sites of oxidative damage, which is known to be induced upon viral infection. Double-strand DNA breaks are also generated by cleavage of viral a sequences by endonuclease G during genome isomerization. We have reconstituted a system using purified proteins in which strand invasion is coupled with DNA synthesis. In this system, the viral single-strand DNA-binding protein promotes assimilation of single-stranded DNA into a homologous supercoiled plasmid, resulting in the formation of a displacement loop. The 3' terminus of the invading DNA serves as a primer for long-chain DNA synthesis promoted by the viral DNA replication proteins, including the polymerase and helicase-primase. Efficient extension of the invading primer also requires a DNA-relaxing enzyme (eukaryotic topoisomerase I or DNA gyrase). The viral polymerase by itself is insufficient for DNA synthesis, and a DNA-relaxing enzyme cannot substitute for the viral helicase-primase. The viral single-strand DNA-binding protein, in addition to its role in the invasion process, is also required for long-chain DNA synthesis. Form X, a topologically distinct, positively supercoiled form of displacement-loop, does not serve as a template for DNA synthesis. These observations support a model in which recombination and replication contribute toward maintaining viral genomic stability by repairing double-strand breaks. They also account for the extensive branching observed during viral replication in vivo.
机译:通过同源重组修复双链DNA断裂对于维持基因组稳定性至关重要。在单纯疱疹病毒1中,双叉DNA断裂可能是由于复制叉在氧化损伤位点塌陷而导致的,众所周知,氧化损伤是在病毒感染后诱发的。在基因组异构化过程中,通过核酸内切酶G切割病毒a序列也会产生双链DNA断裂。我们已经使用纯化的蛋白质重建了系统,其中链侵入与DNA合成相结合。在该系统中,病毒单链DNA结合蛋白可促进单链DNA同化为同源超螺旋质粒,从而形成置换环。入侵DNA的3'端用作病毒DNA复制蛋白(包括聚合酶和解旋酶-引发酶)促进的长链DNA合成的引物。入侵引物的有效延伸还需要DNA松弛酶(真核拓扑异构酶I或DNA旋转酶)。病毒聚合酶本身不足以用于DNA合成,并且DNA松弛酶不能代替病毒解旋酶-引发酶。病毒单链DNA结合蛋白,除了在入侵过程中的作用外,对于长链DNA合成也是必需的。形式X是置换环的拓扑结构独特的正超螺旋形式,不能用作DNA合成的模板。这些观察结果支持其中重组和复制有助于通过修复双链断裂来维持病毒基因组稳定性的模型。它们还解释了体内病毒复制过程中观察到的广泛分支。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号