【24h】

Reverse transcriptase at bacterial telomeres

机译:细菌端粒逆转录酶

获取原文
获取原文并翻译 | 示例
       

摘要

In the past two decades, intense efforts have been devoted to uncovering the mechanisms responsible for the maintenance of telomeres in eukaryotic cells. These efforts have led to the identification of an unusual reverse transcriptase (RT), named te-lomerase, that uses an integral RNA subunit as template to synthesize a short reiterated sequence at the ends of eukaryotic chromosomes. In recent years, the study of eukaryotic telomeres and telomerase has received additional attention because of their established roles in cellular senescence and genome stability. Although much less commonly appreciated, linear chromosomes and telomeres are not exclusive to the eukaryotic kingdom; they can be found in a number of bacteria, including Streptomyces, Borrelia, Rhodo-coccus, etc. (3). In contrast to eukaryotic telomeres, the bacterial versions (at least in some cases) consist of multiple inverted repeats. Much of the current knowledge on bacterial telomere maintenance is derived from analyses of linear chromosomes and plasmids in Streptomyces spp. Early studies indicate that replication of these plasmids initiates from an internal origin, resulting in the generation of a leading strand 3′ overhang, and incomplete duplication of the lagging strand. Thus, similar to eukaryotic telomeres, a restorative or compensatory mechanism is required to prevent the loss of genetic information. In a series of elegant papers, Cohen and colleagues showed that the "patching" of the 5′-recessed ends of Streptomyces plasmids is likely accomplished through a protein-primed mechanism, in which a protein named Tap recognizes a folded structure generated by the 3′ overhang, recruits the Tpg protein, which then serves as primer for the synthesis of DNA on the 5′-recessed strand. This view of bacterial telomere maintenance would thus not appear to require the participation of an RT.
机译:在过去的二十年中,人们致力于发现真核细胞端粒维持机制。这些努力导致了一种不寻常的逆转录酶(RT)的鉴定,该酶名为te-lomerase,它使用一个完整的RNA亚基作为模板在真核染色体末端合成一个短的重复序列。近年来,由于在细胞衰老和基因组稳定性中已确立的作用,对真核端粒和端粒酶的研究受到了更多关注。线性染色体和端粒虽然不是很普遍,但并不是真核界所独有的。它们存在于多种细菌中,包括链霉菌,疏螺旋体,红球菌等(3)。与真核端粒相反,细菌版本(至少在某些情况下)由多个反向重复组成。目前有关细菌端粒维持的许多知识都来自链霉菌属物种中线性染色体和质粒的分析。早期研究表明,这些质粒的复制是从内部起点开始的,从而导致前导链3'突出端的生成,以及落后链的不完全重复。因此,类似于真核端粒,需要一种恢复或补偿机制来防止遗传信息的丢失。在一系列精美的论文中,Cohen及其同事表明,链霉菌质粒5'凹陷末端的“修补”很可能是通过蛋白质引发的机制完成的,其中一种名为Tap的蛋白质可识别3产生的折叠结构'突出端,募集Tpg蛋白,该蛋白随后用作5'凹陷链上DNA合成的引物。因此,这种细菌端粒维持的观点似乎不需要RT的参与。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号