首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Optics at critical intensity: Applications to nanomorphing
【24h】

Optics at critical intensity: Applications to nanomorphing

机译:临界强度的光学器件:纳米变形的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Laser-induced optical breakdown by femtosecond pulses is extraordinarily precise when the energy is near threshold. Despite numerous applications, the basis for this deterministic nature has not been determined. We present experiments that shed light on the basic mechanisms of light-matter interactions in this regime, which we term "optics at critical intensity." We find that the remarkably sharp threshold for laser-induced material damage enables the structure or properties of materials to be modified with nanometer precision. Through detailed study of the minimum ablation size and the effects of polarization, we propose a fundamental framework for describing light-matter interactions in this regime. In surprising contrast to accepted damage theory, multiphoton ionization does not play a significant role. Our results also reject the use of the Keldysh parameter in predicting the role of multiphoton effects. We find that the dominant mechanism is Zener ionization followed by a combination of Zener and Zener-seeded avalanche ionization. We predict that the minimum feature size ultimately depends on the valence electron density, which is sufficiently high and uniform, to confer deterministic behavior on the damage threshold even at the nanoscale. This behavior enables nanomachining with high precision, which we demonstrate by machining highly reproducible nanometer-sized holes and grooves in dielectrics.
机译:当能量接近阈值时,飞秒脉冲引起的激光引起的光学击穿非常精确。尽管有许多应用,但尚未确定这种确定性性质的基础。我们提出的实验揭示了这种情况下光与物质相互作用的基本机理,我们称之为“临界强度的光学”。我们发现,激光引起的材料损坏的阈值非常敏锐,可以使材料的结构或性能以纳米精度进行修改。通过对最小消融尺寸和偏振效应的详细研究,我们提出了一个基本框架来描述这种情况下的光-物质相互作用。与公认的损伤理论相反,多光子电离作用不大。我们的结果也拒绝使用Keldysh参数来预测多光子效应的作用。我们发现主导机制是齐纳电离,然后是齐纳和齐纳种子雪崩电离的组合。我们预测最小特征尺寸最终取决于价电子密度,该价电子密度足够高且均匀,即使在纳米尺度上也能赋予损伤阈值确定性的行为。这种行为可以实现高精度的纳米加工,这可以通过在电介质中加工高度可再现的纳米级孔和凹槽来证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号