首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Designing an extracellular matrix protein with enhanced mechanical stability
【24h】

Designing an extracellular matrix protein with enhanced mechanical stability

机译:设计具有增强的机械稳定性的细胞外基质蛋白

获取原文
获取原文并翻译 | 示例
       

摘要

The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type Ⅲ (fnⅢ) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnⅢ domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnⅢ domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by ≈ 20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.
机译:细胞外基质蛋白腱生蛋白和纤连蛋白在体内具有明显的机械力。两者都包含许多串联重复的同源Ⅲ型纤连蛋白(fnⅢ)结构域,原子力显微镜实验表明,这些结构域的机械强度会发生很大变化。先前的研究表明,来自人肌腱蛋白(TNfn3)的fnⅢ结构域核心的突变大大降低了该结构域的展开力:核心的组成显然对这些蛋白质的机械稳定性至关重要。基于这些结果,我们进行了合理的重新设计,以增加人纤连蛋白第10个fnⅢ域FNfn10的机械稳定性,该功能直接参与整联蛋白的结合。 FNfn10的疏水核心被同源的,机械强度更高的TNfn3结构域取代。尽管被广泛取代,FNoTNc保留了FNfn10的三维结构和细胞粘附活性。原子力显微镜实验表明,工程蛋白FNoTNc的展开力增加了约20%,与TNfn3的展开力相匹配。因此,我们专门设计了具有增加的机械稳定性的蛋白质。我们的结果表明,核心工程学可用于改变蛋白质的机械强度,同时保留功能性表面相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号