首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Dynamics Of Shear-induced Atp Release From Red Blood Cells
【24h】

Dynamics Of Shear-induced Atp Release From Red Blood Cells

机译:剪切诱导的Apt从红细胞释放的动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress < 3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.
机译:三磷酸腺苷(ATP)是许多细胞功能的调节分子,既具有细胞内功能,也可能具有不太广为人知的细胞外功能。后者的一个重要例子涉及红细胞(RBC),它通过释放ATP作为血管舒张信号分子,从而响应动脉颈缩内切应力的增加来帮助调节血压。尽管已经广泛地观察到剪切诱导的ATP释放,并且认为是由细胞膜的变形触发的,但RBC内部的潜在机械传感机制仍存在争议。在这里,我们使用一种体外微流控方法来研究剪切诱导的人红细胞中ATP诱导的ATP释放动力学,其分辨率为毫秒级。我们证明,在剪切应力增加与ATP释放之间存在相当大的延迟时间。该响应时间随着剪切应力而减小,但是令人惊讶的是,它并不明显取决于膜的刚度。此外,我们显示,即使RBC在短缩时显着变形(应力持续时间<3 ms),也不会释放可测量的ATP。这个关键的时标与通过使用高速视频观察细胞变形而确定的特征性膜松弛时间相对应。综上所述,我们的结果提出了一种模型,其中血影蛋白-肌动蛋白细胞骨架网络的收缩触发了机械敏感的ATP释放,而剪切依赖性膜粘度控制了释放速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号