【24h】

Growing Length And Time Scales In Glass-forming Liquids

机译:玻璃形成液体中长度和时间刻度的增长

获取原文
获取原文并翻译 | 示例
       

摘要

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed "spatially heterogeneous dynamics," provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.
机译:尽管经过了数十年的研究,玻璃化转变仍可引起液体在低温下转变为无定形固体的研究。解释过冷时液体弛豫时间的极大增加对于理解玻璃化转变至关重要。尽管许多理论,例如亚当-吉布斯理论,都试图将增长的弛豫时间与与液体结构或分子运动中的空间相关性相关的长度标度联系起来,但长度标度在玻璃态动力学中的作用尚未得到很好的确立。导致结构松弛的分子在空间上相关的重排的最新研究被称为“空间异质动力学”,为该方向提供了新的动力。提取关键现象中的长度比例尺的一种有效方法是有限尺寸比例尺,其中针对穿过感兴趣的长度比例尺的尺寸进行研究的系统。我们使用计算机模拟对逼真的玻璃成型机执行有限尺寸缩放,以评估与空间异质动力学相关的长度比例,该异质动力学随温度降低而增长。但是,随着温度的降低,弛豫时间也随之增加,因此在这种长度下,弛豫时间并没有显示出标准的有限尺寸缩放比例。我们表明,对于所有研究的系统尺寸和温度,弛豫时间均由Adam-Gibbs关系式通过构型熵确定,但与基于自旋玻璃模型的理论预期不一致,即构型熵与温度无关大大高于模式耦合理论的临界温度。我们的结果为形成玻璃液体的动力学提供了新的见解,并对现有的理论描述提出了严峻的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号