【24h】

Waltzing α-helices

机译:华尔兹α螺旋

获取原文
获取原文并翻译 | 示例
       

摘要

Proteins are 30% α-helices, which, together with β-sheets and loops, self-assemble into specific topological arrangements that make biologically active 3-dimensional structures. The α-helix has another important feature: it is capable of folding autonomously (1). Despite the apparently simpler structure, α-helix formation is governed by the same physical principles as protein folding, and recruits a similar array of interactions for its stabilization, including hydrogen bonds, electrostatics, dipole-dipole, and hydrophobic interactions (2). Furthermore, isolated α-helices display very complex conformational behavior. All of these properties have made the α-helix an excellent test lab for protein-folding research. From such efforts we now understand the factors that determine α-helix stability (3) and the timescales and mechanism of α-helix formation (4). New nanosecond laser-induced temperature-jump techniques can detect the kinetics of individual residues within the α-helix (5), producing exciting data with which to refine our understanding of helix formation. However, what has been missing is a technique to detect the complex motions that should take place in the nanosecond timescale in isolated a-helices. In an article appearing in a recent issue of PNAS, Fierz et al. (6) describe the application of the contact formation ultrafast kinetic technique to monitor nanosecond conformational fluctuations in α-helices at equilibrium conditions. The method promises to directly report on previously unobserved and important conformational processes of already formed α-helical segments, such as motion resulting from helix melting at one end and growth at the other.
机译:蛋白质是30%的α螺旋,与β-折叠和环一起自组装成特定的拓扑结构,从而形成具有生物活性的3维结构。 α螺旋的另一个重要特征是:它能够自动折叠(1)。尽管表面上看起来更简单,但α-螺旋的形成仍受与蛋白质折叠相同的物理原理支配,并招募了一系列类似的相互作用以使其稳定,包括氢键,静电,偶极-偶极和疏水相互作用(2)。此外,孤立的α螺旋显示非常复杂的构象行为。所有这些特性使α-螺旋成为进行蛋白质折叠研究的出色测试实验室。通过这些努力,我们现在了解了确定α-螺旋稳定性的因素(3)以及α-螺旋形成的时标和机理(4)。新的纳秒激光诱导的温度跳跃技术可以检测α-螺旋内单个残基的动力学(5),产生令人兴奋的数据,用以完善我们对螺旋形成的理解。但是,缺少一种检测在孤立的a螺旋中应在纳秒级时标中发生的复杂运动的技术。 Fierz等人在最近一期的PNAS中发表的一篇文章中。 (6)描述了接触形成超快动力学技术在平衡条件下监测α-螺旋中纳秒构象波动的应用。该方法有望直接报告已经形成的α-螺旋片段的先前未曾观察到的重要构象过程,例如由一端的螺旋熔化而另一端的增长导致的运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号