首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Noninvasive diagnosis of seed viability using infrared thermography
【24h】

Noninvasive diagnosis of seed viability using infrared thermography

机译:红外热成像技术无创诊断种子活力

获取原文
获取原文并翻译 | 示例
       

摘要

Recent advances in the noninvasive analyses of plant metabolism include stress imaging techniques, mainly developed for vegetative tissues. We explored if infrared thermography can be used to predict whether a quiescent seed will germinate or die upon water uptake. Thermal profiles of viable, aged, and dead Pisum sativum seeds were recorded, and image analysis of 22,000 images per individual seed showed that infrared thermography can detect imbibition- and germination-associated biophysical and biochemical changes. These "thermal fingerprints" vary with viability in this species and in Triticum aestivum and Brassica napus seeds. Thermo-genesis of the small individual B. napus seeds was at the limit of the technology. We developed a computer model of "virtual pea seeds," that uses Monte Carlo simulation, based on the heat production of major seed storage compounds to unravel physico-chemical processes of thermogenesis. The simulation suggests that the cooling that dominates the early thermal profiles results from the dissolution of low molecular-weight carbohydrates. Moreover, the kinetics of the production of such "cooling" compounds over the following 100 h is dependent on seed viability. We also developed a deterministic tool that predicts in the first 3 hours of water uptake, when seeds can be redried and stored again, whether or not a pea seed will germinate. We believe that the early separation of individual, ungerminated seeds (live, aged, or dead) before destructive germination assessment creates unique opportunities for integra-tive studies on cell death, differentiation, and development.
机译:植物新陈代谢的非侵入性分析的最新进展包括应力成像技术,该技术主要用于营养组织。我们探讨了红外热成像技术是否可用于预测静态种子在吸水后是否会发芽或死亡。记录了有活力的,衰老的和死亡的豌豆种子的热图,对每张种子22,000张图像的图像分析表明,红外热成像可以检测与吸水和发芽相关的生物物理和生化变化。这些“热指纹”在该物种以及普通小麦和甘蓝型油菜种子中随生存能力而变化。小个体油菜种子的热生成是该技术的极限。我们基于主要种子存储化合物的热量产生来揭示生热的物理化学过程,并使用蒙特卡洛模拟技术开发了“虚拟豌豆种子”计算机模型。模拟表明,主导早期热曲线的冷却是由于低分子量碳水化合物的溶解所致。此外,在随后的100小时内产生这种“冷却”化合物的动力学取决于种子的生存能力。我们还开发了一种确定性工具,可以预测在吸水的前3个小时中何时可以重新干燥并再次储存种子,而豌豆种子是否会发芽。我们认为,在进行破坏性发芽评估之前,将单个未发芽的种子(有生命的,衰老的或死亡的)提前分离会为细胞死亡,分化和发育的综合研究创造独特的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号