首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth
【24h】

Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth

机译:纳米粒子介导的内体信号传导调节生长锥运动和神经突生长

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Understanding neurite growth regulation remains a seminal problem in neurobiology. During development and regeneration, neurite growth is modulated by neurotrophin-activated signaling endosomes that transmit regulatory signals between soma and growth cones. After injury, delivering neurotrophic therapeutics to injured neurons is limited by our understanding of how signaling endosome localization in the growth cone affects neurite growth. Nanobiotechnology is providing new tools to answer previously inaccessible questions. Here, we show superparamagnetic nano-particles (MNPs) functionalized with TrkB agonist antibodies are endocytosed into signaling endosomes by primary neurons that activate TrkB-dependent signaling, gene expression and promote neurite growth. These MNP signaling endosomes are trafficked into nascent and existing neurites and transported between somas and growth cones in vitro and in vivo. Manipulating MNP-signaling endosomes by a focal magnetic field alters growth cone motility and halts neurite growth in both peripheral and central nervous system neurons, demonstrating signaling endosome localization in the growth cone regulates motility and neurite growth. These data suggest functionalized MNPs may be used as a platform to study subcellular organelle localization and to deliver nanotherapeutics to treat injury or disease in the central nervous system.
机译:了解神经突生长调节仍然是神经生物学中的一个开创性问题。在发育和再生过程中,神经突生长被神经营养因子激活的信号内体调节,该内体在体细胞和生长锥之间传递调节信号。受伤后,将神经营养疗法传递给受伤的神经元受到我们对如何在生长锥中发出内体定位信号影响神经突生长的理解的限制。纳米生物技术正在提供新的工具来回答以前无法解决的问题。在这里,我们显示用TrkB激动剂抗体功能化的超顺磁性纳米颗粒(MNP)被激活TrkB依赖性信号传导,基因表达并促进神经突生长的初级神经元内吞到信号传导内体中。这些MNP信号内体在体外和体内被运输到新生的和现有的神经突中,并在体和生长锥之间运输。通过聚焦磁场操纵MNP信号内体可以改变生长锥的运动能力,并阻止周围和中枢神经系统神经元中神经突的生长,这表明在生长锥中的内体定位可以调节运动和神经突的生长。这些数据表明功能化的MNPs可以用作研究亚细胞器定位的平台,并提供纳米疗法来治疗中枢神经系统的损伤或疾病。

著录项

  • 来源
  • 作者单位

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

    Bascom Palmer Eye Institute, Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    axon; nanotechnology;

    机译:轴突纳米技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号