首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
【24h】

Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

机译:从半导体量子点到金属氧化物纳米粒子的光致电子转移

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3,4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO_2, TiO_2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO_2) were not the same as those which showed the highest photocurrent (TiO_2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
机译:量子点-金属氧化物结是下一代太阳能电池,发光二极管和纳米结构电子阵列的组成部分。在这里,我们使用一系列CdSe量子点施主(直径分别为2.8、3.3、4.0和4.2 nm)和金属氧化物纳米粒子受体(SnO_2,TiO_2和ZnO)对这些结处的电子转移进行了全面的研究。表观电子传递速率常数显示出对系统自由能变化的强烈依赖性,在较小的驱动力下表现出急剧的上升,然后在远离特征重组能的地方出现了适度的上升。观察到的趋势模仿了从单量子态到电子接受态(例如存在于金属氧化物纳米粒子的导带中的那些)的连续电子转移的预测行为。与染料敏化的金属氧化物电子转移研究相反,由于电子冷却速率与电子转移速率的比率较大,因此我们的系统未显示未加热的热电子注入。为了研究这些发现在光伏电池中的意义,以与用于研究电子转移部分的薄膜相同的方式构造了量子点金属氧化物工作电极。有趣的是,表现出最快的电子传输速率(SnO_2)的膜与表现出最高光电流(TiO_2)的膜不同。这些发现表明,除了在量子点-金属氧化物界面的电子转移外,其他电子转移反应在确定整体器件效率中也起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号