首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces
【24h】

Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces

机译:智能变量发射率纳米卫星热控制的初步设计与对比研究

获取原文
获取原文并翻译 | 示例
       

摘要

The thermal radiation that is rejected or absorbed into deep space is highly variable. Ultralight smart surfaces with arrays of unit cells can be designed to change their effective emissivity and absorptivity without energy consumption, actuators, and controllers, and can be used for the temperature control of satellites. The smart surfaces work in a similar manner to thermal louvers but they are hingeless, lighter, and their activation depends on their anisotropic mechanical properties and multilayer structure. The generated thermal stresses between layers that have a high mismatch in the coefficient of thermal expansion cause large deformations and rotations within small temperature changes. The arrays of the surface open or close, and transform their geometry as a function of temperature; therefore, coatings of different thermo-optical properties are revealed or concealed, thus creating variable emissivity surfaces. The emissivity and absorptivity curves of the smart surfaces can be entirely designed as a function of temperature. Theoretically, an emissivity change equal to Delta epsilon = 0.8 can be achieved. The small thermal capacitance renders nanosatellites very susceptible to temperature fluctuations. In this study, different emissivity curves were generated to re-calculate the worst cold and hot cases, and to redesign the thermal control system of a certain nanosatellite. We studied a plethora of design cases based on the energy balance equation in steady state while considering the nanosatellite as one-node geometry. In two ideal designs, the temperature deviation of the nanosatellite in the worst cold and hot cases is limited to Delta tau = 37 celcius or 43 celcius without the use of heaters. Moreover, with a power equal to 0.7 W the temperature deviation is limited to Delta tau = 20 celcius. Consequently, the thermal fatigue is minimized and the energy consumption during the eclipse phase is reduced.
机译:被拒绝或吸收到深空间的热辐射是高度可变的。带有单元电池阵列的超轻智能曲面可以设计为改变其有效的发射率和吸收率,而无需能量消耗,执行器和控制器,并且可用于卫星的温度控制。智能表面以与热百叶窗类似的方式工作,但它们是无比的,更轻,并且它们的激活取决于它们的各向异性机械性能和多层结构。在热膨胀系数中具有高错匹配的层之间产生的热应力会在较小的温度变化之内引起大的变形和旋转。表面打开或关闭的阵列,并根据温度的函数转换它们的几何形状;因此,透露或隐藏不同热光学性质的涂层,从而产生可变发射率表面。智能表面的发射率和吸收率曲线可以作为温度的函数完全设计。理论上,可以实现等于Delta epsilon = 0.8的发射率变化。小型热电容使纳米替肽非常容易受到温度波动的影响。在这项研究中,产生了不同的发射曲线以重新计算最差的冷和热壳,并重新设计某种纳米卫星的热控制系统。在将纳米卫星视为单节点几何形状的情况下,我们研究了基于稳态能量平衡方程的基于能量平衡方程的多种设计案例。在两个理想的设计中,纳米卫星在最耐寒和热箱中的温度偏差仅限于Delta Tau = 37塞尔西​​乌斯或43个Celcius,而不使用加热器。此外,功率等于0.7W,温度偏差仅限于Delta Tau = 20个Celcius。因此,最小化了热疲劳,并且减少了日食期间的能量消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号