首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces
【24h】

Preliminary design and comparative study of thermal control in a nanosatellite through smart variable emissivity surfaces

机译:通过智能可变发射率表面对纳米卫星进行热控制的初步设计和比较研究

获取原文
获取原文并翻译 | 示例
       

摘要

The thermal radiation that is rejected or absorbed into deep space is highly variable. Ultralight smart surfaces with arrays of unit cells can be designed to change their effective emissivity and absorptivity without energy consumption, actuators, and controllers, and can be used for the temperature control of satellites. The smart surfaces work in a similar manner to thermal louvers but they are hingeless, lighter, and their activation depends on their anisotropic mechanical properties and multilayer structure. The generated thermal stresses between layers that have a high mismatch in the coefficient of thermal expansion cause large deformations and rotations within small temperature changes. The arrays of the surface open or close, and transform their geometry as a function of temperature; therefore, coatings of different thermo-optical properties are revealed or concealed, thus creating variable emissivity surfaces. The emissivity and absorptivity curves of the smart surfaces can be entirely designed as a function of temperature. Theoretically, an emissivity change equal to Delta epsilon = 0.8 can be achieved. The small thermal capacitance renders nanosatellites very susceptible to temperature fluctuations. In this study, different emissivity curves were generated to re-calculate the worst cold and hot cases, and to redesign the thermal control system of a certain nanosatellite. We studied a plethora of design cases based on the energy balance equation in steady state while considering the nanosatellite as one-node geometry. In two ideal designs, the temperature deviation of the nanosatellite in the worst cold and hot cases is limited to Delta tau = 37 celcius or 43 celcius without the use of heaters. Moreover, with a power equal to 0.7 W the temperature deviation is limited to Delta tau = 20 celcius. Consequently, the thermal fatigue is minimized and the energy consumption during the eclipse phase is reduced.
机译:被拒绝或吸收到深层空间中的热辐射是高度可变的。具有单位单元阵列的超轻型智能表面可以设计为在不消耗能源,执行器和控制器的情况下更改其有效发射率和吸收率,并且可以用于卫星的温度控制。智能表面的工作方式与热百叶窗相似,但它们无铰链,重量轻,其激活取决于其各向异性的机械性能和多层结构。在热膨胀系数中高度不匹配的层之间产生的热应力会在较小的温度变化内引起较大的变形和旋转。表面的阵列打开或关闭,并根据温度变换其几何形状;因此,可以揭示或隐藏具有不同热光学性质的涂层,从而产生可变的发射率表面。智能表面的发射率和吸收率曲线可以完全设计为温度的函数。从理论上讲,可以实现等于δepsilon = 0.8的发射率变化。小的热电容使纳米卫星非常容易受到温度波动的影响。在这项研究中,生成了不同的发射率曲线,以重新计算最差的冷热情况,并重新设计某些纳米卫星的热控制系统。我们基于稳态的能量平衡方程研究了许多设计案例,同时将纳米卫星视为一节点几何。在两个理想的设计中,在不使用加热器的情况下,在最差的冷热情况下,纳米卫星的温度偏差都限制在τtau = 37摄氏度或43摄氏度。此外,在功率等于0.7 W的情况下,温度偏差限制为Delta tau = 20摄氏度。结果,使热疲劳最小化并且减少了食相期间的能量消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号