...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science >Modelling and analysis of a three-revolute parallel micro-positioning mechanism
【24h】

Modelling and analysis of a three-revolute parallel micro-positioning mechanism

机译:三转并联微定位机构的建模与分析

获取原文
获取原文并翻译 | 示例
           

摘要

This article presents the modelling and analysis methodologies of a three-degree-of-freedom (DOF) flexure-based mechanism. The mechanical design and working principle of a three revolute parallel mechanism is briefly provided. The kinematics of the proposed mechanism is established by simplifying flexure hinges into the revolute joints. The relationship of velocity between the Cartesian space and joint space is established. For small displacements of piezoelectric actuators, this velocity mapping can be simplified as the displacement relationship for the flexure-based mechanism. Two simplified methodologies, linearizing triangular functions and constant Jacobian, are utilized to conduct computational analysis for the flexure-based mechanism. The reachable workspace and theoretical resolution are also investigated. A novel empirical displacement mapping model is proposed based on finite-element analysis. Experiments are carried out to verify the established models of the three-DOF flexure-based mechanism. The maximum reachable workspace can reach up to approximately±68 and±76 μm in x and y directions, and the translational and rotational resolutions of the flexure-based mechanism are approximately 3 nm and 0.4 μrad, respectively.
机译:本文介绍了一种基于三自由度(DOF)挠曲的机构的建模和分析方法。简要介绍了三转并联机构的机械设计和工作原理。所提出机构的运动学是通过将挠性铰链简化成旋转关节来建立的。建立了笛卡尔空间与关节空间之间的速度关系。对于压电致动器的小位移,该速度映射可以简化为基于挠曲的机构的位移关系。两种简化的方法,即线性化三角函数和常数雅可比矩阵,被用于对基于挠曲的机构进行计算分析。还研究了可到达的工作空间和理论分辨率。提出了一种基于有限元分析的经验位移映射模型。进行实验以验证建立的三自由度基于挠曲的机构模型。最大可达到的工作空间在x和y方向上可以达到大约±68和±76μm,基于挠曲的机构的平移和旋转分辨率分别约为3 nm和0.4μrad。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号