首页> 外文期刊>Printed Circuit Design & Manufacture >In Case You Missed It: 'Polarization Switching and Electrical Control of Interlayer Excitons in Two-Dimensional van der Waals Heterostructures'
【24h】

In Case You Missed It: 'Polarization Switching and Electrical Control of Interlayer Excitons in Two-Dimensional van der Waals Heterostructures'

机译:万一您错过了它:“二维范德华异质结构中层间激子的极化转换和电控制”

获取原文
获取原文并翻译 | 示例
       

摘要

The long-lived interlayer excitons in van der Waals heterostructures based on transition-metal dichalcogenides, together with unique spin-valley physics, make them promising for next-generation photonic and valleytronic devices. Although the emission characteristics of interlayer excitons have been studied, efficient manipulation of their valley states, a necessary requirement for information encoding, is still lacking. Here, the authors demonstrate comprehensive electrical control of interlayer excitons in a MoSe_2/WSe_2 heterostructure. Encapsulation of the well-aligned stack with hexagonal boron nitride (h-BN) permits the resolution of two separate narrow interlayer transitions with opposite helicities under circularly polarized excitation, either preserving or reversing the polarization of incoming light. By electrically controlling their relative intensities, the authors realize a polarization switch with tunable emission intensity and wavelength. Finally, large g-factors of these two transitions on application of an external magnetic field are observed. These results are interpreted within the picture of moire-induced brightening of forbidden optical transitions. The ability to control the polarization of interlayer excitons is a step toward the manipulation of the valley degree of freedom in realistic device applications. [Nature Photonics, January 2019).
机译:基于过渡金属二硫属化物的范德华异质结构中的层间激子寿命长,再加上独特的自旋谷物理学,使其成为下一代光子和谷电子器件的理想选择。尽管已经研究了层间激子的发射特性,但是仍然缺乏对谷值状态的有效控制,这是信息编码的必要要求。在这里,作者展示了MoSe_2 / WSe_2异质结构中层间激子的全面电控制。用六方氮化硼(h-BN)封装好排列良好的叠层,可以在圆偏振激发下分辨两个具有相反螺旋度的单独的窄层间过渡,从而保留或反转入射光的偏振。通过电控制它们的相对强度,作者实现了具有可调发射强度和波长的偏振开关。最后,观察到在施加外部磁场时这两个跃迁的大g因子。这些结果在莫尔条纹引起的禁止的光学跃迁变亮的图片中得到了解释。控制层间激子极化的能力是朝着在实际器件应用中操纵波谷自由度迈出的一步。 [自然光子学,2019年1月)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号