首页> 外文期刊>Exploration Geophysics >The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media
【24h】

The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media

机译:快速行进方法:一种用于层析成像和跟踪复杂分层介质中多相的有效工具

获取原文
获取原文并翻译 | 示例
       

摘要

The accurate prediction of seismic traveltimes is required in many areas of seismology, including the processing of seismic reflection profiles, earthquake location, and seismic tomography at a variety of scales. In this paper, we present two seismic applications of a recently developed grid-based numerical scheme for tracking the evolution of monotonically advancing interfaces, via finite-difference solution of the eikonal equation, known as the fast marching method (FMM). Like most other practical grid-based techniques, FMM is only capable of locating the first-arrival phase in continuous media; however, its combination of unconditional stability and rapid computation make it a truly practical scheme for velocity fields of arbitrary complexity. The first application of FMM that we present focuses on the prediction of multiple reflection and refraction phases in complex 2D layered media. By treating each layer that the wavefront enters as a separate computational domain, we show that sequential application of FMM can be used to track phases comprising any number of reflection and transmission branches in media of arbitrary complexity. We also show that the use of local grid refinement in the source neighbourhood, where wavefront curvature is high, significantly improves the accuracy of the scheme with little extra computational expense. The second application of FMM that we consider is in the context of 3D teleseismic tomography, which uses relative traveltime residuals from distant earthquakes to image wavespeed variations in the Earth's crust and upper mantle beneath a seismic array. Using teleseismic data collected in Tasmania, we show that FMM can rapidly and robustly calculate two-point traveltimes from an impinging teleseismic wavefront to a receiver array located on the surface, despite the presence of significant lateral variations in wavespeed in the intervening crust and upper mantle. Combined with a rapid subspace inversion method, the new FMM based tomographic scheme is shown to be extremely efficient and robust.
机译:在地震学的许多领域都需要准确预测地震的传播时间,包括处理各种规模的地震反射剖面,地震位置和地震层析成像。在本文中,我们介绍了最近开发的基于网格的数值方案的两个地震应用,该方案通过eikonal方程的有限差分解(称为快速行进法(FMM))跟踪单调前进界面的演化。像大多数其他实用的基于网格的技术一样,FMM仅能够在连续介质中定位第一个到达阶段。但是,它的无条件稳定性和快速计算的结合使它成为任意复杂度速度场的真正实用方案。我们目前提出的FMM的第一个应用重点是预测复杂2D分层介质中的多个反射和折射相位。通过将波前进入的每一层视为一个单独的计算域,我们表明FMM的顺序应用可用于跟踪任意复杂度的介质中包括任意数量的反射和透射分支的相位。我们还表明,在波阵面曲率高的源邻域中使用局部网格细化可以显着提高该方案的准确性,而几乎不需要额外的计算费用。我们考虑的FMM的第二个应用是在3D远震层析成像的背景下,它使用来自遥远地震的相对传播时间残差来成像地震阵列下方地壳和上地幔中的波速变化。使用塔斯马尼亚州收集的远震数据,我们表明,尽管在中间地壳和上地幔中波速存在明显的侧向变化,但FMM可以快速,稳健地计算从撞击远震波前到地表接收器阵列的两点传播时间。 。结合快速子空间反演方法,新的基于FMM的断层扫描方案被证明是非常有效和鲁棒的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号