首页> 外文期刊>Polymer Degradation and Stability >Polyethylene glycol-albumin/fibrin interpenetrating polymer networks with adaptable enzymatic degradation for tissue engineering applications
【24h】

Polyethylene glycol-albumin/fibrin interpenetrating polymer networks with adaptable enzymatic degradation for tissue engineering applications

机译:聚乙二醇-白蛋白/纤维蛋白互穿聚合物网络,具有适合组织工程应用的酶促降解能力

获取原文
获取原文并翻译 | 示例
       

摘要

A new series of polyethylene glycol-albumin/Fibrin interpenetrating polymer networks (PEG-BSA/Fb IPNs) combining a fibrin gel with a co-network of polyethylene glycol and serum albumin has been developed in order to study the enzymatic degradation of such architectures combining protein and synthetic polymer partners. BSA provides biodegradability thank to its many segments cleavable by enzymes while PEG ensures material resistance (shape preservation, mechanical moduli, …). Previous the degradation study of these easily manipulable PEG-BSA/Fb IPNs, it was shown that each partner (fibrin, PEG and BSA) contributes to the elastic modulus value which is only possible in an IPN architecture where the different polymer partners form a continuous phase in the whole material. The homogeneous protein distribution in the materials was also confirmed by confocal microscopy.Then, their biodegradability was studied by combining three complementary characterizations: on the one hand, absorbance of the hydrolytic enzyme solution in which they were immersed to quantify the proportion of protein fragment extracted and, on the other hand, viscoelastic moduli of the hydrogels after immersion in the same enzyme to evaluate their mechanical resistance, and finally, MEB imaging to check the hydrolysis homogeneity. The proteolytic enzyme degrades quickly IPNs containing less than 3 wt% PEG while other IPNs remain resistant to proteolysis over long periods, although their viscoelastic properties are reduced by 70% and morphology at the microscopic level changed in a few hours. The degradation rate of these materials is thus easily tunable by composition adjustment.
机译:为了研究这种结构的酶促降解,已经开发了一系列新的聚乙二醇-白蛋白/纤维蛋白互穿聚合物网络(PEG-BSA / Fb IPNs),将纤维蛋白凝胶与聚乙二醇和血清白蛋白的共网络相结合。蛋白质和合成聚合物的伙伴。 BSA具有许多可被酶切割的片段,因此具有生物降解性,而PEG可确保材料的抵抗力(形状保持性,机械模量等)。以前对这些易于操作的PEG-BSA / Fb IPN进行了降解研究,结果表明,每个配偶(纤维蛋白,PEG和BSA)都对弹性模量值有贡献,这仅在IPN体系结构中是可能的,其中不同的聚合物配偶形成连续整个材料中的相。共聚焦显微镜也证实了蛋白质在材料中的均匀分布,然后结合三个互补特征研究了其生物降解性:一方面,将水解酶溶液浸入其中以测定提取的蛋白质片段的比例,以吸收率进行分析。另一方面,将水凝胶浸入相同的酶后评估其粘弹性模量,以评估其机械阻力,最后通过MEB成像检查水解均匀性。蛋白水解酶可迅速降解包含少于3%wt%PEG的IPN,而其他IPN仍可长期抵抗蛋白水解,尽管它们的粘弹性降低了70%,微观水平的形态在几个小时内发生了变化。因此,这些材料的降解速度可通过组成调整轻松调节。

著录项

  • 来源
    《Polymer Degradation and Stability》 |2018年第6期|218-227|共10页
  • 作者单位

    Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI), Institut des Matériaux, University of Cergy-Pontoise,Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (Errmece), Institut des Matériaux, University of Cergy-Pontoise;

    Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (Errmece), Institut des Matériaux, University of Cergy-Pontoise;

    Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI), Institut des Matériaux, University of Cergy-Pontoise;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrogels; Free-radical copolymerization; Morphology; Rheology; Microscopy;

    机译:水凝胶;自由基共聚;形貌;流变学;显微镜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号