首页> 外文期刊>Planta >Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants
【24h】

Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants

机译:盐胁迫促进番茄木质化组织木质部的发育和S-腺苷-1-蛋氨酸合酶的表达

获取原文
获取原文并翻译 | 示例
           

摘要

S-Adenosyl-l-methionine synthase (SAM; ATP:l-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-l-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.
机译:S-腺苷-1-甲硫氨酸合酶(SAM; ATP:1-甲硫氨酸腺苷转移酶,EC 2.5.1.6)催化通用甲基供体S-腺苷-1-甲硫氨酸(AdoMet)的生物合成。该酶是由番茄中的盐分胁迫诱导的(Lycopersicon esculentum Mill。)。为了阐明SAM和AdoMet在植物适应盐环境中的作用,研究了对照和盐胁迫番茄中SAM的表达模式和组织学分布。免疫组织化学分析表明,SAM蛋白在所有细胞类型和植物器官中均有表达,尽管在木质化组织中优先积累。通过组织化学测试估计木质素沉积,并通过图像分析定量响应盐度的组织木质化程度。盐胁迫下植物中维管束中木质化细胞的平均数量明显增加,并且在根脉管系统中发现木质化面积最大。因此,SAM基因转录物和蛋白质的最大丰度发生在根中。这些结果表明,在盐分胁迫下,SAM活性增加与木质素在植物维管组织中的沉积更大有关。提出了一个模型,其中盐胁迫下番茄根中木质素气管元素数量的增加可能会增强细胞间的水传输路径,这将赋予更大的选择性并减少离子吸收,并补偿水的总流量减少和沿质外生途径的溶质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号