...
首页> 外文期刊>Plant Physiology >RED AND FAR-RED INSENSITIVE 2, a RING-Domain Zinc Finger Protein, Mediates Phytochrome-Controlled Seedling Deetiolation Responses
【24h】

RED AND FAR-RED INSENSITIVE 2, a RING-Domain Zinc Finger Protein, Mediates Phytochrome-Controlled Seedling Deetiolation Responses

机译:红色和远红色的敏感性2,一种环状域的锌指蛋白,介导植物色素控制的幼苗脱苗反应。

获取原文
获取原文并翻译 | 示例
           

摘要

Light is arguably the most important resource for plants, and an array of photosensory pigments enables plants to develop optimally in a broad range of ambient-light conditions. The red- and far-red-light-absorbing photosensory pigments or phytochromes (phy) regulate seedling deetiolation responses, photoperiodic flowering, and circadian rhythm. We have identified a long hypocotyl mutant under red and far-red light, rfi2-1 (red and far-red insensitive 2 to 1). rfi2-1 was also impaired in phytochrome-mediated end-of-day far-red light response, cotyledon expansion, far-red light block of greening, and light-induced expression of CHLOROPHYLL A/B BINDING PROTEIN 3 and CHALCONE SYNTHASE. Introduction of rfi2-1 mutation into phyB-9 or phyA-211 did not enhance or suppress the long hypocotyl phenotype of phyB-9 or phyA-211 under red or far-red light, respectively, and RFI2 likely functions downstream of phyB or phyA. RFI2 was identified through the segregation of two T-DNA insertions into different recombinant lines, genetic rescue, and phenotypic characterization of a second mutant allele rfi2-2. RFI2 encodes a protein with a C3H2C3-type zinc finger or RING domain known to mediate protein-protein or protein-DNA interactions, and RFI2 is localized to the nucleus. RFI2 therefore reveals a signaling step that mediates phytochrome control of seedling deetiolation. nnnn--------------------------------------------------------------------------------nPerception of light signals from their natural environment plays an important role for all living organisms, especially for plants, which are unable to migrate to more favorable locations. As a result, light influences many aspects of plant development from seed germination, seedling deetiolation, phototropism, shade avoidance, to photoperiodic flowering. Plants have evolved a number of informational photoreceptors to monitor their ambient-light signals, and these photoreceptors include red/far-red light-absorbing phytochromes (phy) and UV-A/blue light-absorbing cryptochromes and phototropins. There are five phytochromes, phyA to phyE, in Arabidopsis (Arabidopsis thaliana); phyA and phyB play predominant roles in control of seedling deetiolation responses. phyA is the receptor for far-red light-mediated deetiolation responses, whereas phyB is the major photoreceptor for red-light-mediated deetiolation responses (Aukerman et al., 1997; Whitelam and Devlin, 1997; Devlin et al., 1998). Analysis of the phyA/phyB double mutants clearly demonstrated a positive effect of phyA on phyB in control of seedling deetiolation responses (Neff and Chory, 1998). A negative interaction between phyA and phyB has also been described (Cerdán et al., 1999; Hennig et al., 2001). For example, overexpression of phyB in Arabidopsis decreased the far-red light-mediated inhibition of hypocotyl elongation (Wagner et al., 1996). nGenetic screens have identified mutants that are defective in far-red light-mediated deetiolation responses, and the mutated genes encode phyA-specific signaling components such as FAR1, FHY1, FHY3, FIN2, FIN219, LAF1, LAF6, PAT1, and HFR1 (Whitelam et al., 1993; Hoecker et al., 1998; Soh et al., 1998; Hudson et al., 1999; Bolle et al., 2000; Fairchild et al., 2000; Hsieh et al., 2000; Ballesteros et al., 2001). Genetic screens have also identified several red light-specific mutants including gi, elf3, srr1, aprr1, ztl, pef2, pef3, and red1 (Ahmad and Cashmore, 1996; Wagner et al., 1997; Huq et al., 2000a; Makino et al., 2000; Somers et al., 2000; Liu et al., 2001; Staiger et al., 2003). A few of the mutated genes such as GI, ELF3, SRR1, APRR1, and ZTL have been molecularly characterized (Huq et al., 2000b; Makino et al., 2000; Somers et al., 2000; Liu et al., 2001; Staiger et al., 2003). Five other mutants have defective deetiolation responses under both red and far-red light and include cog1, pef1, psi2, pft1, and prr7 (Ahmad and Cashmore, 1996; Genoud et al., 1998; Cerdán and Chory, 2003; Kaczorowski and Quail, 2003; Park et al., 2003). Both cog1 and psi2 show hypersensitive hypocotyl growth response to red and far-red light, and COG1 and PSI2 therefore negatively regulate phyA and phyB signaling (Genoud et al., 1998; Park et al., 2003). COG1 encodes a Dof family member of transcription factors. In contrast, pef1 and prr7 have hyposensitive hypocotyl growth response to red and far-red light, suggesting that PEF1 and PRR7 regulate phyA and phyB signaling positively (Cerdán and Chory, 2003; Kaczorowski and Quail, 2003). PRR7 encodes a PSEUDO-RESPONSE REGULATOR and the absence of PRR7 also causes a coordinated 3-to-6-h shift in the phasing of the oscillatory expression of CCA1, LHY, and TOC1, the central components of the circadian clock (Kaczorowski and Quail, 2003). Interestingly, pft1 was hyporesponsive to far-red light but hyperresponsive to red light (Cerdán and Chory, 2003). PFT1 may therefore function at a phytochrome-signaling node where antagonistic interactions between phyA and phyB occur. nnCombined biochemical and genetic approaches have also identified a few light-signaling components that function in both phyA and phyB pathways. PIF3, a bHLH transcription factor, was initially isolated by its interaction with phyA and phyB (Ni et al., 1999). A T-DNA knockout allele of PIF3 showed a hypersensitive hypocotyl growth response only to red light. Although PIF3 does not function in phyA-mediated inhibition of hypocotyl elongation, it negatively regulates both phyA- and phyB-mediated cotyledon opening and expansion responses (Kim et al., 2003). Another phyA and phyB interactor, NDPK2, functions positively in phytochrome signaling (Choi et al., 1999). Recombinant NDPK2 preferentially binds to the red light-activated form of phytochrome, and this interaction increases the activity of the recombinant NDPK2 protein. Mutation in NDPK2 showed a partial defect in red and far-red light-mediated cotyledon opening and greening responses (Choi et al., 1999). In contrast, the overexpression lines of PKS1, a phytochrome phosphorylation substrate, were less sensitive only to red light, but retained normal sensitivity to blue and far-red light, indicating that PKS1 acts as an inhibitor of phyB signaling (Fankhauser et al., 1999). phyA and phyB also interact in vitro with PIF1, PIF4, ARR4, ELF3, FyPP, and PAPP5 (Liu et al., 2001; Sweere et al., 2001; Huq and Quail, 2002, 2005; Kim et al., 2002; Ryu et al., 2005). nnAlthough a number of phytochrome-signaling components have been identified, the mechanisms by which phytochromes regulate seedling deetiolation and flowering responses are still largely unknown (Quail, 2002; Simpson and Dean, 2002). We isolated a new long hypocotyl mutant, rfi2-1 (red and far-red insensitive 2 to 1), under both red and far-red light. rfi2-1 also showed other defects in phyA- and phyB-mediated deetiolation responses such as cotyledon expansion and light-induced gene expression. We uncovered two T-DNA insertions on chromosome 2 in rfi2-1, and the recombinant line carrying a T-DNA insertion in front of At2g47700 retained the mutant phenotype. Genetic rescue of rfi2-1 and phenotypic characterization of rfi2-2 further confirmed the identity of RFI2 gene. RFI2 defines a novel step in phytochrome signaling that controls seedling deetiolation responses.
机译:光可以说是植物最重要的资源,并且一系列光敏颜料使植物能够在广泛的环境光条件下最佳发育。吸收红光和远红光的光敏色素或植物色素(phy)调节幼苗的脱脂反应,光周期开花和昼夜节律。我们已经确定了一个长的下胚轴突变体,在红色和远红色的光下,rfi2-1(红色和远红色对2:1不敏感)。 rfi2-1还受到植物色素介导的日终远红光反应,子叶扩展,远红绿光阻滞以及光诱导的叶绿素A / B结合蛋白3和查尔酮合酶表达的损害。将rfi2-1突变引入phyB-9或phyA-211不会分别增强或抑制在红光或远红光下的phyB-9或phyA-211的长下胚轴表型,RFI2可能在phyB或phyA的下游起作用。 RFI2是通过将两个T-DNA插入分离到不同的重组品系中,遗传拯救和第二个突变等位基因rfi2-2的表型表征而鉴定的。 RFI2编码具有C3H2C3型锌指或RING结构域的蛋白质,已知可介导蛋白质-蛋白质或蛋白质-DNA相互作用,并且RFI2定位于细胞核。因此,RFI2揭示了一个信号传导步骤,该步骤介导了对植物脱色的植物色素控制。 nnnn ------------------------------------------------- ------------------------------- n感知来自自然环境的光信号对于所有活生物体都起着重要作用,尤其是对于无法迁移到更有利位置的植物。结果,光影响植物发育的许多方面,从种子发芽,幼苗脱脂,光致,避荫到光周期开花。植物已经进化出许多信息性感光体来监视其环境光信号,这些感光体包括吸收红/远红光的植物色素(phy)和吸收UV-A /蓝光的隐色素和光蛋白。拟南芥(Arabidopsis thaliana)中有五种植物色素,从phyA到phyE。 phyA和phyB在控制幼苗去化反应中起主要作用。 phyA是远红光介导的脱脱脂反应的受体,而phyB是红光介导的脱脱脂反应的主要感光体(Aukerman等,1997; Whitelam和Devlin,1997; Devlin等,1998)。 phyA / phyB双突变体的分析清楚地表明,phyA对phyB在控制幼苗去化反应中具有积极作用(Neff和Chory,1998)。还描述了phyA和phyB之间的负性相互作用(Cerdán等,1999; Hennig等,2001)。例如,拟南芥中phyB的过表达降低了远红光介导的下胚轴伸长的抑制作用(Wagner et al。,1996)。 n遗传筛选已鉴定出在远红光介导的去异化反应中存在缺陷的突变体,并且突变的基因编码phyA特异性信号传导成分,例如FAR1,FHY1,FHY3,FIN2,FIN219,LAF1,LAF6,PAT1和HFR1(Whitelam等人,1993; Hoecker等人,1998; Soh等人,1998; Hudson等人,1999; Bolle等人,2000; Fairchild等人,2000; Hsieh等人,2000; Ballesteros等人等人,2001)。遗传筛选还鉴定了几种红光特异性突变体,包括gi,elf3,srr1,aprr1,ztl,pef2,pef3和red1(Ahmad和Cashmore,1996; Wagner等,1997; Huq等,2000a; Makino等人,2000; Somers等人,2000; Liu等人,2001; Staiger等人,2003)。一些突变的基因如GI,ELF3,SRR1,APRR1和ZTL已被分子鉴定(Huq等,2000b; Makino等,2000; Somers等,2000; Liu等,2001 ; Staiger等,2003)。其他五种突变体在红光和远红光下均具有缺陷的去离子反应,包括cog1,pef1,psi2,pft1和prr7(Ahmad和Cashmore,1996; Genoud等,1998;Cerdán和Chory,2003; Kaczorowski和Quail ,2003; Park等,2003)。 cog1和psi2均显示出对红光和远红光的过敏性下胚轴生长反应,因此COG1和PSI2负调控phyA和phyB信号传导(Genoud等,1998; Park等,2003)。 COG1编码转录因子的Dof家族成员。相比之下,pef1和prr7对红光和远红光的下胚轴生长反应敏感,表明PEF1和PRR7积极调节phyA和phyB信号传导(Cerdán和Chory,2003; Kaczorowski和Quail,2003)。 PRR7编码PSEUDO-RESPONSE REGULATOR,并且PRR7的缺失还会在CCA1,LHY和TOC1振荡表达的相位的定相过程中产生3至6小时的协调移位,这是生物钟的主要组成部分(Kaczorowski和Quail ,2003)。有趣的是,pft1对远红光反应迟钝,但对红光反应过度(Cerdán和Chory,2003)。因此,PFT1可能在phyA和phyB之间发生拮抗作用的植物色素信号传导节点上起作用。 nnnn生物化学和遗传学相结合的方法还确定了一些在phyA和phyB途径中均起作用的光信号成分。 PIF3是bHLH转录因子,最初是通过与phyA和phyB的相互作用而分离的(Ni等,1999)。 PIF3的T-DNA敲除等位基因仅对红光显示过敏性下胚轴生长反应。虽然PIF3在phyA介导的下胚轴伸长抑制中不起作用,但它负性调节phyA和phyB介导的子叶开放和扩增反应(Kim等,2003)。另一个phyA和phyB相互作用子NDPK2在植物色素信号传导中起正向作用(Choi等人,1999)。重组NDPK2优先结合红光激活形式的植物色素,这种相互作用增加了重组NDPK2蛋白的活性。 NDPK2的突变显示出红色和远红色光介导的子叶开放和绿色响应的部分缺陷(Choi等,1999)。相比之下,作为植物色素磷酸化底物的PKS1的过表达谱系仅对红光较不敏感,但对蓝光和远红光保持正常的敏感性,表明PKS1可以作为phyB信号的抑制剂(Fankhauser等, 1999)。 phyA和phyB还在体外与PIF1,PIF4,ARR4,ELF3,FyPP和PAPP5相互作用(Liu等人,2001; Sweere等人,2001; Huq和Quail,2002,2005; Kim等人,2002; Ryu等,2005)。尽管已经发现了许多植物色素的信号传导成分,但植物色素调节幼苗脱脂和开花反应的机制仍然未知(Quail,2002; Simpson and Dean,2002)。我们在红光和远红光下均分离出了一个新的长下胚轴突变体rfi2-1(红色和远红色对2:1不敏感)。 rfi2-1还显示了phyA和phyB介导的去脂反应中的其他缺陷,例如子叶扩增和光诱导的基因表达。我们在rfi2-1的2号染色体上发现了两个T-DNA插入,​​并且在At2g47700前面带有T-DNA插入的重组系保留了突变表型。 rfi2-1的基因拯救和rfi2-2的表型表征进一步证实了RFI2基因的身份。 RFI2在植物色素信号传导中定义了一个新步骤,可控制幼苗的去离子化反应。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号