首页> 外文期刊>Plant Physiology >The Tryptophan Conjugates of Jasmonic and Indole-3-Acetic Acids Are Endogenous Auxin Inhibitors1,[W],[OA]
【24h】

The Tryptophan Conjugates of Jasmonic and Indole-3-Acetic Acids Are Endogenous Auxin Inhibitors1,[W],[OA]

机译:茉莉酸和吲哚-3-乙酸的色氨酸缀合物是内源性生长素抑制剂[1] [W] [OA]

获取原文
获取原文并翻译 | 示例
       

摘要

Most conjugates of plant hormones are inactive, and some function to reduce the active hormone pool. This study characterized the activity of the tryptophan (Trp) conjugate of jasmonic acid (JA-Trp) in Arabidopsis (Arabidopsis thaliana). Unexpectedly, JA-Trp caused agravitropic root growth in seedlings, unlike JA or nine other JA-amino acid conjugates. The response was dose dependent from 1 to100 µM, was independent of the COI1 jasmonate signaling locus, and unlike the jasmonate signal JA-isoleucine, JA-Trp minimally inhibited root growth. The Trp conjugate with indole-3-acetic acid (IAA-Trp) produced a similar response, while Trp alone and conjugates with benzoic and cinnamic acids did not. JA-Trp and IAA-Trp at 25 µM nearly eliminated seedling root inhibition caused by 2 µM IAA. The TIR1 auxin receptor is required for activity because roots of tir1-1 grew only approximately 60% of wild-type length on IAA plus JA-Trp, even though tir1-1 is auxin resistant. However, neither JA-Trp nor IAA-Trp interfered with IAA-dependent interaction between TIR1 and Aux/IAA7 in cell-free assays. Trp conjugates inhibited IAA-stimulated lateral root production and DR5-β-glucuronidase gene expression. JA-deficient mutants were hypersensitive to IAA and a Trp-overaccumulating mutant was less sensitive, suggesting endogenous conjugates affect auxin sensitivity. Conjugates were present at 5.8 pmol g–1 fresh weight or less in roots, seedlings, leaves, and flowers, and the values increased approximately 10-fold in roots incubated in 25 µM Trp and IAA or JA at 2 µM. These results show that JA-Trp and IAA-Trp constitute a previously unrecognized mechanism to regulate auxin action. nnnn--------------------------------------------------------------------------------nThroughout their life, plants use a variety of hormonal signals to adjust growth in response to developmental and external cues. Central among the growth regulating hormones is the auxin indole-3-acetic acid (IAA), which is involved in nearly all aspects of plant development (for review, see Woodward and Bartel, 2005). Optimal growth requires tight control of IAA activity, which is accomplished by diverse mechanisms that include regulating IAA biosynthesis, its transport among tissues, cycling between active and inactive forms of auxin, and hormone degradation through various oxidative pathways (see Ljung et al., 2002; Leyser, 2006; Scheres and Xu, 2006). Regulatory control is also accomplished at the level of IAA interaction with auxin receptors and at numerous steps downstream of this signaling interaction (Mockaitis and Estelle, 2008). nWhile jasmonates are best known for their role in defense against herbivores and certain pathogens, they also control growth (for recent overviews, see Wasternack, 2007; Howe and Jander, 2008; Browse, 2009). Exogenous jasmonic acid (JA) inhibits growth (Yamane et al., 1980; Dathe et al., 1981; Ueda and Kato, 1982; Staswick et al., 1992), and both JA biosynthesis and jasmonate signaling mutants display growth abnormalities, particularly in reproductive organs and in vegetative tissues during defense responses (Mandaokar et al., 2006; Zavala and Baldwin, 2006; Yan et al., 2007; Zhang and Turner, 2008). It makes sense that jasmonate defense signaling would be tied to growth regulation because under stress plants must adjust their development and reallocate resources toward defense (Herms and Mattson, 1992). Although the full mechanism of jasmonate-mediated growth regulation is unclear, it may involve cell cycle transitions, cell division, and IAA-induced cell elongation (Miyamoto et al., 1997; Swiatek et al., 2002, 2004; Zhang and Turner, 2008). nnPlants synthesize conjugated forms of both JA and IAA. Indeed, most IAA in Arabidopsis (Arabidopsis thaliana) is bound through ester or amide linkages to various constituents, including sugars, amino acids, and peptides (Ljung et al., 2002). Conjugates are generally considered inactive metabolites of the hormone. For example, IAA-Asp and IAA-Glu are catabolized, while IAA-Ala and IAA-Leu are stored forms of IAA that can be accessed at a later time by hydrolysis of the amide linkage (Rampey et al., 2004). Early physiological studies suggested that some JA conjugates might have biological activity, but like the IAA conjugates, most were considered inactive or of minor importance compared with JA and its methyl ester (JA-Me; Kramell et al., 1997; Miersch et al., 1999). That perspective changed with the discovery that the Ile conjugate of JA (JA-Ile) is a key jasmonate signal (Staswick and Tiryaki, 2004). nnJA-Ile accumulation is strongly but transiently induced in plant defense responses in both Arabidopsis and tobacco (Nicotiana tabacum), and this accumulation is tied to productive defense reactions (Kang et al., 2006; Wang et al., 2007; Suza and Staswick, 2008). Furthermore, JA-Ile promotes interaction between the COI1 F-box protein, the presumed jasmonate receptor, and its ubiquitination targets, the JAZ transcriptional repressors (Chini et al., 2007; Thines et al., 2007; Katsir et al., 2008a; Staswick, 2008). In contrast, JA and JA-Me have essentially no activity in this interaction. Instead, they are precursors that become effective signals when added exogenously to plants because they are converted to JA-Ile by the JAR1 conjugating enzyme (Staswick and Tiryaki, 2004; Tamogami et al., 2008). nnJA-Ile signaling closely parallels the mechanism previously established for auxin, although in the latter case, free rather than conjugated IAA is the active signal. IAA binds in a pocket of the TIR1 auxin receptor, which is an F-box component of the E3 ubiquitin ligase complex called SCFTIR1. Auxin binding strengthens the interaction between TIR1 and the Aux/IAA protein targets for ubiquitination (Dharmasiri et al., 2005a; Kepinski and Leyser, 2005; Tan et al., 2007). Degradation of the Aux/IAA transcriptional repressors by the 26 s proteasome then leads to auxin-dependent gene transcription and auxin response. Five TIR1-related proteins, AFB1 through AFB5, have been identified, and they have partially overlapping functions with TIR1 (Dharmasiri et al., 2005b; Mockaitis and Estelle, 2008). In contrast, COI1 is the primary, if not the sole, F-box protein in jasmonate signaling. nnCritical tools that have shaped our understanding of auxin activity are auxin response inhibitors of two general classes: those that alter auxin transport and those that perturb auxin signaling. Although a few endogenous auxin inhibitors have been reported, little is known about their in vivo roles. Most studies have employed synthetic inhibitors, such as 1-naphthylphthalamic acid (NPA), p-chlorophenoxyisobutyric acid (PCIB), 4,4,4-trifluoro-3-indole-3-butyric acid, tri-iodobenzoic acid, and 1-naphthoxyacetic acid (MacRae and Bonner, 1953; Jönsson, 1961; Katayama et al., 1995; Tomic et al., 1998; Parry et al., 2001; Rahman et al., 2002). The TIR1 auxin receptor was discovered as a mutant (tir1) resistant to the NPA transport inhibitor, and new antagonists and agonists have been identified in recent chemical genetic screens (Ruegger et al., 1997; Armstrong et al., 2004; Surpin et al., 2005; Yamazoe et al., 2005; Hayashi et al., 2008). nnWhile synthetic auxin inhibitors have been immensely informative, there are potential drawbacks to using these unnatural compounds. They may work in ways that differ from endogenous inhibitors, and potential xenobiotic responses to the foreign compounds can complicate analysis of their mechanism of action (Armstrong et al., 2004). Naturally occurring auxin inhibitors, on the other hand, may refine our understanding of how auxin activity is controlled in planta, and they may illuminate new components of the auxin regulatory pathway. This study was initiated to evaluate possible jasmonate activity for a series of JA-amino acid conjugates. Surprisingly, the Trp conjugates of both JA and IAA are naturally occurring auxin antagonists that interfere with a broad range of IAA-mediated processes. Trp conjugates require TIR1 for full activity, and determining how they work may shed new light on the control of auxin signaling in plants.
机译:植物激素的大多数缀合物是无活性的,并且某些具有减少活性激素库的功能。这项研究表征了茉莉酸(JA-Trp)的色氨酸(Trp)共轭物在拟南芥(Arabidopsis thaliana)中的活性。出乎意料的是,与JA或其他9种JA-氨基酸缀合物不同,JA-Trp引起幼苗的引力根生长。该响应是剂量依赖性的1至100 µM,与茉莉酸的COI1信号转导位点无关,并且与茉莉酸的信号JA-异亮氨酸不同,JA-Trp对根生长的抑制最小。 Trp与吲哚-3-乙酸的共轭物(IAA-Trp)产生相似的响应,而单独的Trp和与苯甲酸和肉桂酸的共轭物则没有。 25 µM的JA-Trp和IAA-Trp几乎消除了2 µM IAA引起的幼苗根抑制。 TIR1生长素受体是活性所必需的,因为即使tir1-1对植物生长素具有抗性,在IAA加JA-Trp上,tir1-1的根仅生长约60%的野生型长度。但是,在无细胞试验中,JA-Trp和IAA-Trp都不会干扰TIR1和Aux / IAA7之间依赖IAA的相互作用。 Trp缀合物抑制IAA刺激的侧根产生和DR5-β-葡萄糖醛酸苷酶基因表达。 JA不足的突变体对IAA高度敏感,而Trp过度积累的突变体则较不敏感,表明内源性结合物会影响植物生长素的敏感性。根,幼苗,叶和花中的缀合物以5.8 pmol g-1鲜重或更少的重量存在,在25 µM Trp和IAA或JA中以2 µM孵育的根中,缀合物的含量增加约10倍。这些结果表明,JA-Trp和IAA-Trp构成了以前无法识别的调节生长素作用的机制。 nnnn ------------------------------------------------- ------------------------------- n植物一生中会利用各种激素信号来调节生长,以适应发育和外部提示。生长调节激素中最主要的是生长素吲哚-3-乙酸(IAA),它几乎参与植物发育的所有方面(有关综述,请参见Woodward和Bartel,2005)。最佳生长需要严格控制IAA的活性,这可以通过多种机制来实现,包括调节IAA生物合成,其在组织之间的运输,生长素的有功和非活性形式之间的循环以及通过各种氧化途径进行的激素降解(参见Ljung等,2002)。 ; Leyser,2006; Scheres和Xu,2006)。调节控制也在IAA与生长素受体的相互作用水平以及该信号相互作用下游的许多步骤中完成(Mockaitis和Estelle,2008)。 n虽然茉莉花因其在防御食草动物和某些病原体中的作用而广为人知,但它们也能控制生长(有关近期概述,请参见Wasternack,2007; Howe和Jander,2008; Browse,2009)。外源茉莉酸(JA)抑制生长(Yamane等,1980; Dathe等,1981; Ueda和Kato,1982; Staswick等,1992),JA生物合成和茉莉酸信号突变体均显示生长异常,特别是在防御反应期间生殖器官和营养组织中的抗性(Mandaokar等人,2006; Zavala和Baldwin,2006; Yan等人,2007; Zhang和Turner,2008)。茉莉花防御信号将与生长调节联系在一起是有道理的,因为在压力下植物必须调整其发育并重新分配资源用于防御(Herms and Mattson,1992)。尽管茉莉酸酯介导的生长调节的完整机制尚不清楚,但它可能涉及细胞周期转换,细胞分裂和IAA诱导的细胞伸长(Miyamoto等,1997; Swiatek等,2002,2004; Zhang和Turner, 2008)。 nnPlants合成JA和IAA的共轭形式。实际上,拟南芥(Arabidopsis thaliana)中的大多数IAA通过酯或酰胺键与各种成分结合,包括糖,氨基酸和肽(Ljung等,2002)。结合物通常被认为是激素的非活性代谢物。例如,IAA-Asp和IAA-Glu被分解代谢,而IAA-Ala和IAA-Leu是IAA的储存形式,可以在以后的时间通过酰胺键的水解而获得(Rampey等,2004)。早期的生理研究表明,某些JA共轭物可能具有生物学活性,但与IAA共轭物一样,与JA及其甲酯相比,大多数被认为是无活性的或次要的(JA-Me; Kramell等人,1997; Miersch等人。 ,1999)。随着JA的Ile共轭物(JA-Ile)是关键的茉莉酸信号的发现,这种观点发生了改变(Staswick和Tiryaki,2004)。 nnJA-Ile积累在拟南芥和烟草(烟草)的植物防御反应中强烈但短暂地诱导,并且这种积累与生产性防御反应有关(Kang等,2006; Wang等,2007; Suza和Staswick ,2008)。此外,JA-Ile促进了COI1 F-box蛋白,推测的茉莉酸酯受体及其泛素化靶标之间的相互作用,JAZ转录阻遏物(Chini等,2007; Thines等,2007; Katsir等,2008a; Staswick,2008)。相反,JA和JA-Me在此交互中基本上没有活动。相反,它们是外源添加到植物中时变成有效信号的前体,因为它们通过JAR1缀合酶转化为JA-Ile(Staswick和Tiryaki,2004; Tamogami等,2008)。 nnJA-Ile信号传导与先前为生长素建立的机制非常相似,尽管在后者的情况下,游离而不是共轭的IAA是有效信号。 IAA结合在TIR1生长素受体的口袋中,该口袋是E3泛素连接酶复合物称为SCFTIR1的F-box成分。生长素结合增强了TIR1与用于泛素化的Aux / IAA蛋白靶标之间的相互作用(Dharmasiri等,2005a; Kepinski和Leyser,2005; Tan等,2007)。 26 s蛋白酶体降解Aux / IAA转录阻遏物然后导致生长素依赖性基因转录和生长素应答。已经鉴定出5种TIR1相关蛋白AFB1至AFB5,它们与TIR1具有部分重叠的功能(Dharmasiri等,2005b; Mockaitis和Estelle,2008)。相反,COI1是茉莉酸酯信号传导中的主要(即使不是唯一的)F-box蛋白。 nn影响我们对植物生长素活性的理解的重要工具是植物生长素应答抑制剂,可分为两大类:改变植物生长素转运的抑制剂和干扰植物生长素信号传导的抑制剂。尽管已报道了几种内源性生长素抑制剂,但对其体内作用了解甚少。大多数研究都采用了合成抑制剂,例如1-萘基邻苯二甲酸(NPA),对氯苯氧基异丁酸(PCIB),4,4,4-三氟-3-吲哚-3-丁酸,三碘苯甲酸和1-萘氧基乙酸(MacRae和Bonner,1953;Jönsson,1961; Katayama等,1995; Tomic等,1998; Parry等,2001; Rahman等,2002)。 TIR1生长素受体被发现是对NPA转运抑制剂具有抗性的突变体(tir1),并且在最近的化学遗传筛选中已发现新的拮抗剂和激动剂(Ruegger等,1997; Armstrong等,2004; Surpin等)等人,2005; Yamazoe等人,2005; Hayashi等人,2008)。虽然合成生长素抑制剂具有丰富的信息,但使用这些非天然化合物存在潜在的弊端。它们可能以与内源性抑制剂不同的方式发挥作用,并且对外来化合物的潜在异源生物反应可能会使对其作用机理的分析复杂化(Armstrong等,2004)。另一方面,天然存在的生长素抑制剂可以使我们更好地理解植物中生长素活性的控制方式,并且可以阐明生长素调节途径的新组成部分。开始这项研究以评估一系列JA-氨基酸缀合物可能的茉莉酸酯活性。出人意料的是,JA和IAA的Trp缀合物都是天然的生长素拮抗剂,可干扰广泛的IAA介导的过程。 Trp偶联物需要TIR1才能发挥全部活性,确定其工作方式可能为植物生长素信号传导的控制提供新的思路。

著录项

  • 来源
    《Plant Physiology》 |2009年第3期|p.1310-1321|共12页
  • 作者

    Paul E. Staswick*;

  • 作者单位

    Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583–0915;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tryptophan ,Conjugates,Jasmonic;

    机译:色氨酸;缀合物;茉莉;
  • 入库时间 2022-08-17 23:31:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号