首页> 外文期刊>Plant Physiology >Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts
【24h】

Proteins from Multiple Metabolic Pathways Associate with Starch Biosynthetic Enzymes in High Molecular Weight Complexes: A Model for Regulation of Carbon Allocation in Maize Amyloplasts

机译:高分子量复合物中淀粉生物合成酶相关的多种代谢途径的蛋白质:玉米淀粉体中碳分配的调控模型。

获取原文
获取原文并翻译 | 示例
           

摘要

Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds. nnnn--------------------------------------------------------------------------------nAn important question in plant physiology is the means by which glucan storage homopolymers are synthesized such that they are able to assemble into semicrystalline starch granules. The starch polymer amylopectin consists of -(14)-linked Glc units in linear chains, and these are joined to each other by -(16) branch linkages. A distinguishing feature of amylopectin is that the branch points are clustered relative to each other (Thompson, 2000). The functional properties of starch depend on this ordered structure, which allows crystallization of the linear glucan chains that extend from the branch clusters. Packing of insoluble Glc units provides plants with a stable and abundant energy source to maintain metabolic needs in the absence of light. Considering that crystallization draws metabolic equilibria toward carbohydrate accumulation, another important physiological question is how the flux of reduced carbon is regulated such that seeds and other storage tissues achieve the proper balance of starch compared with protein and lipids. nBiosynthesis of crystalline starch is accomplished in large part by the coordinated activities of starch synthases (SSs) and starch branching enzymes (SBEs), together with starch debranching enzymes (DBEs; Ball and Morell, 2003). SSs catalyze linear chain elongation by addition of a Glc unit donated from the nucleotide sugar ADP-Glc (ADPGlc) to the nonreducing end of an acceptor chain. Branch linkages are formed by the action of SBEs, which cleave a linear chain and transfer the released fragment to a C6 hydroxyl group of the same or a neighboring chain. DBEs hydrolyze branch linkages, and genetic evidence indicates that this function is necessary in order for plants to accumulate crystalline starch (James et al., 1995; Ball et al., 1996; Myers et al., 2000). Multiple classes of SBE, SS, and DBE are highly conserved in the plant kingdom (Ball and Morell, 2003; Li et al., 2003; Leterrier et al., 2008). nnRecent evidence indicates that certain SSs and SBEs are capable of physically associating with each other (Tetlow et al., 2004a, 2004b, 2008; Hennen-Bierwagen et al., 2008). The first such evidence came from analysis of amyloplast extracts from developing wheat (Triticum aestivum) endosperm, showing that SBEI, SBEIIb, and starch phosphorylase coimmunoprecipitate and that phosphorylation of one or more of those proteins is necessary for the association (Tetlow et al., 2004b). Further studies in maize (Zea mays) and wheat utilized combinations of yeast two-hybrid assays, affinity purification with immobilized recombinant ligands, and immunoprecipitation to demonstrate a large number of pair-wise interactions involving SSI, SSIIa, SSIII, SBEIIa, and SBEIIb (Hennen-Bierwagen et al., 2008; Tetlow et al., 2008). Gel permeation chromatography (GPC) analyses of maize amyloplast extracts demonstrated the existence of complexes in elution peaks corresponding to approximately 670 and 300 kD (referred to as C670 and C300, respectively) that contained SSIII, SSIIa, SBEIIa, and SBEIIb in varying relative concentrations (Hennen-Bierwagen et al., 2008). Essentially all of the SSIII in the amyloplast extracts is in C670, and the great majority of SSIIa is in C300, suggesting that the physiological functions of these proteins derive from these assembly states. Understanding the functions of the complexes will require detailed characterization of their constituents, including any other binding partners that may be present. nnAmong these enzymes, SSIII has been implicated from several observations as a regulator of starch biosynthesis, in addition to its enzymatic role. Mutations in the maize gene dull1 (du1), which codes for SSIII, eliminated SSIII enzyme activity, as expected, and in addition simultaneously caused a major reduction in the activity of SBEIIa (Boyer and Preiss, 1981). The du1– mutation of maize or the equivalent genetic defect in rice (Oryza sativa) resulted in elevated total SS activity in soluble endosperm extracts as a result of increased SSI activity (Singletary et al., 1997; Cao et al., 1999; Fujita et al., 2007). In Arabidopsis (Arabidopsis thaliana) leaves, a regulatory role was indicated by the observation that mutations eliminating SSIII caused an increased rate of starch biosynthesis (Zhang et al., 2005). The mechanism(s) by which SSIII influences the activities of other starch biosynthetic enzymes or the overall starch biosynthesis rate is unknown. Part of the explanation may be that physical association of SSIII with other enzymes provides for regulatory interactions. nnRegulatory functions of SSIII proteins may be provided by an evolutionarily conserved amino acid sequence region located adjacent to the catalytic domain responsible for SS enzyme activity. Members of the conserved SSI, SSII, and SSIII classes of starch synthase all contain an N-terminal extension relative to the conserved catalytic domain homologous to glycogen synthase. In the SSI and SSII classes, the N-terminal extension is conserved among monocots and dicots but not universally throughout the land plants or in unicellular green algae. SSIII, in contrast, contains a region of approximately 450 residues immediately upstream of the catalytic region, referred to here as the SSIII homology domain (SSIIIHD), that appears to have been fixed in evolution as far back as the emergence of land plants (Gao et al., 1998; Li et al., 2000; Dian et al., 2005). For example, SSIIIHD from the monocot maize and the unicellular green alga Chlamydomonas reinhardtii share 32% identity over 415 aligned residues, and SSIIIHD from maize and the dicot Arabidopsis are 56% identical over 458 aligned residues. In contrast, the SSI N-terminal domain from maize is 16% identical over 92 aligned residues with Arabidopsis SSI and 12% identical over 72 aligned residues with Chlamydomonas SSI. SSIIIHD in maize is involved in protein-protein interactions with SSI (Hennen-Bierwagen et al., 2008) and in addition possesses sequences that confer a glucan-binding function (Palopoli et al., 2006; Senoura et al., 2007; Valdez et al., 2008). The further N-terminal extension of maize SSIII beyond the SSIIIHD domain, which is not conserved, has also been implicated in binding to other starch biosynthetic enzymes by yeast two-hybrid data (Hennen-Bierwagen et al., 2008). nnThis study further characterized multisubunit complexes containing SSIII and SSIIa. Maize mutations are available that eliminate particular starch biosynthetic enzymes in vivo, and using these tools the interdependence of specific SSs and SBEs for assembly into high molecular mass complexes was assessed. The results indicated that SSIII, SSIIa, SBEIIa, and SBEIIb associate together in an enzyme complex of approximately 670 kD, as opposed to individual or pair-wise high molecular mass assemblies. Consistent with the genetic results, biochemical analyses of amyloplast extracts demonstrated stable associations of SSIII with SSIIa, SBEIIb, and SBEIIa. Proteomic analyses revealed the presence of other proteins in the starch biosynthetic enzyme complexes. Two of these were large and small subunits of ADP-Glc pyrophosphorylase (AGPase), which catalyzes formation of the substrate of SS. Other enzymes not known to be directly involved in starch synthesis also were detected, including pyruvate orthophosphate dikinase (PPDK) and Suc synthase (SUS). In the instances of PPDK and SUS, inclusion in high molecular mass assemblies required the presence of multiple starch biosynthetic enzymes, indicating that the components are likely to all be in the same complex. These data revealed that specific enzymes from apparently distinct metabolic pathways interact with starch biosynthetic enzymes, suggesting potential means of coordinating and regulating carbon metabolism during grain filling.
机译:玉米(Zea mays)和小麦(Triticum aestivum)淀粉体的淀粉生物合成酶以高分子量复合物形式存在于细胞提取物中。但是,这些程序集的性质尚待定义。这项研究测试了玉米酶淀粉合酶IIa(SSIIa),SSIII,淀粉分支酶IIb(SBEIIb)和SBEIIa之间的相互依赖性,以组装成多亚基复合物。消除了任何一种蛋白质的突变也阻止了其他蛋白质组装成大约670 kD的高分子量形式,因此SSIII,SSIIa,SBEIIa和SBEIIb最有可能一起存在于同一复合物中。 SSIIa,SBEIIb和SBEIIa(而不是SSIII)也相互依赖,以组装成约300 kD的复合物。 SSIII,SSIIa,SBEIIa和SBEIIb通过连续的色谱步骤共纯化,而SBEIIa,SBEIIb和SSIIa与SSIII以磷酸化依赖性方式共免疫沉淀。 SBEIIa和SBEIIb也保留在亲和柱上,该柱带有位于SS催化域外部的SSIII的特定保守片段。在多种生化方法中与SSIII共纯化的其他蛋白质包括丙酮酸正磷酸二激酶(PPDK)的两种已知同工型,ADP-葡萄糖焦磷酸化酶的大亚基和小亚基,以及蔗糖合酶亚型SUS-SH1。 PPDK和SUS-SH1需要SSIII,SSIIa,SBEIIa和SBEIIb才能组装成670-kD复合体。这些复合物可能在发育中的种子的代谢途径之间的碳分配的整体调节中起作用。 nnnn ------------------------------------------------- ------------------------------- n植物生理学中的一个重要问题是葡聚糖储存均聚物的合成方法能够组装成半结晶淀粉颗粒。淀粉聚合物支链淀粉由线性链中的-(14)-连接的Glc单元组成,并且它们通过-(16)分支键彼此连接。支链淀粉的一个显着特征是分支点相对于彼此成簇(Thompson,2000)。淀粉的功能特性取决于该有序结构,该结构允许从支链簇延伸的线性葡聚糖链结晶。不溶性Glc单元的堆积为植物提供了稳定而丰富的能源,以在没有光照的情况下维持新陈代谢的需要。考虑到结晶作用使代谢平衡趋向于碳水化合物的积累,因此另一个重要的生理问题是如何调节还原碳的流量,以使种子和其他存储组织与蛋白质和脂质相比达到淀粉的适当平衡。结晶淀粉的生物合成在很大程度上是由淀粉合成酶(SSs)和淀粉分支酶(SBEs)以及淀粉脱支酶(DBEs; Ball and Morell,2003)的协调活性来完成的。 SS通过将从核苷酸糖ADP-Glc(ADPGlc)捐赠的Glc单元添加至受体链的非还原端来催化线性链延长。通过SBE的作用形成支链,所述SBE裂解线性链并将释放的片段转移至相同或相邻链的C 6羟基。 DBEs水解分支键,并且遗传证据表明该功能对于植物积累结晶淀粉是必需的(James等,1995; Ball等,1996; Myers等,2000)。植物界中多种类别的SBE,SS和DBE是高度保守的(Ball and Morell,2003; Li等,2003; Leterrier等,2008)。最近的证据表明某些SS和SBE能够彼此物理关联(Tetlow等,2004a,2004b,2008; Hennen-Bierwagen等,2008)。最早的此类证据来自对发育中的小麦(Triticum aestivum)胚乳淀粉体提取物的分析,结果表明SBEI,SBEIIb和淀粉磷酸化酶可共同免疫沉淀,并且其中一种或多种蛋白质的磷酸化对于缔合是必要的(Tetlow等, 2004b)。在玉米(Zea mays)和小麦中的进一步研究利用了酵母双杂交测定,固定化重组配体的亲和纯化以及免疫沉淀的组合,以证明涉及SSI,SSIIa,SSIII,SBEIIa和SBEIIb的大量成对相互作用( Hennen-Bierwagen等,2008; Tetlow等,2008)。玉米淀粉质提取物的凝胶渗透色谱(GPC)分析表明,洗脱峰中存在复合物,对应于约670和300 kD(分别称为C670和C300),其中包含相对浓度不同的SSIII,SSIIa,SBEIIa和SBEIIb (Hennen-Bierwagen等,2008)。基本上,淀粉糊质提取物中的所有SSIII都存在于C670中,而绝大多数SSIIa都存在于C300中,表明这些蛋白质的生理功能源自这些组装状态。了解复合物的功能将需要详细描述其成分,包括可能存在的任何其他结合配偶体。在这些酶中,SSIII除具有酶促作用外,还被认为与淀粉生物合成的调节剂有关。编码SSIII的玉米基因dull1(du1)中的突变消除了SSIII酶的活性,正如预期的那样,并且同时导致SBEIIa的活性大大降低(Boyer和Preiss,1981)。玉米的du1-突变或水稻(Oryza sativa)中同等的遗传缺陷导致可溶性胚乳提取物中总SS活性升高,这是由于SSI活性增加(Singletary等,1997; Cao等,1999; Fujita等人,2007)。在拟南芥(Arabidopsis thaliana)叶片中,通过观察到消除SSIII的突变引起淀粉生物合成速率增加的观察表明,其具有调节作用(Zhang等,2005)。 SSIII影响其他淀粉生物合成酶活性或总体淀粉生物合成速率的机制尚不清楚。部分解释可能是SSIII与其他酶的物理缔合提供了调节相互作用。 nnSSIII蛋白的调节功能可以由位于与负责SS酶活性的催化域相邻的进化上保守的氨基酸序列区域提供。淀粉合酶的保守的SSI,SSII和SSIII类别的成员均相对于与糖原合酶同源的保守的催化结构域均含有N-末端延伸。在SSI和SSII类中,N末端延伸在单子叶植物和双子叶植物之间是保守的,但在整个陆地植物或单细胞绿藻中并不普遍。相比之下,SSIII在催化区域的上游直接包含一个约450个残基的区域,此处称为SSIII同源结构域(SSIIIHD),它在进化上似乎早在陆地植物出现时就已被固定(Gao等人,1998; Li等人,2000; Dian等人,2005)。例如,来自单子叶植物玉米和单细胞绿藻莱茵衣藻的SSIIIHD在415个对齐残基上具有32%的同一性,而来自玉米和双子叶植物拟南芥的SSIIIHD在458个对齐残基上具有56%的同一性。相反,来自玉米的SSI N-末端结构域与拟南芥SSI在92个比对残基上具有16%的同一性,而与衣藻SSI在72个比对残基上具有12%的同一性。玉米中的SSIIIHD参与与SSI的蛋白质-蛋白质相互作用(Hennen-Bierwagen等,2008),此外还具有赋予葡聚糖结合功能的序列(Palopoli等,2006; Senoura等,2007; Valdez等人,2008)。玉米SSIII超出SSIIIHD结构域的N端进一步延伸(这是不保守的)也被酵母双杂交数据与其他淀粉生物合成酶结合(Hennen-Bierwagen等,2008)。 nn这项研究进一步表征了含有SSIII和SSIIa的多亚基复合物。可获得在体内消除特定淀粉生物合成酶的玉米突变,并使用这些工具评估了组装成高分子量复合物的特定SS和SBE的相互依赖性。结果表明,SSIII,SSIIa,SBEIIa和SBEIIb在大约670 kD的酶复合物中缔合在一起,这与单个或成对的高分子组装相反。与遗传结果一致,淀粉状塑料提取物的生化分析表明SSIII与SSIIa,SBEIIb和SBEIIa具有稳定的联系。蛋白质组学分析表明,淀粉生物合成酶复合物中还存在其他蛋白质。其中两个是ADP-Glc焦磷酸化酶(AGPase)的大和小亚基,可催化SS底物的形成。还发现了其他未知的直接参与淀粉合成的酶,包括丙酮酸正磷酸二激酶(PPDK)和Suc合酶(SUS)。在PPDK和SUS的情况下,将其包含在高分子量组装物中需要存在多种淀粉生物合成酶,这表明这些组分很可能全部在同一复合物中。这些数据表明,来自明显不同的代谢途径的特定酶与淀粉生物合成酶相互作用,表明在灌浆过程中协调和调节碳代谢的潜在手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号