首页> 外文期刊>Planetary and space science >Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express Mission
【24h】

Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express Mission

机译:火星快车任务中行星傅里叶光谱仪数据分析的方法

获取原文
获取原文并翻译 | 示例
       

摘要

This work presents an algorithm for the scientific analysis of individual calibrated measurements from the Planetary Fourier spectrometer (PFS). The instrument, included in the scientific payload of the ESA Mars Express mission to Mars, acquires spectra in the range between 250 and 8200 cm~(-1), with a sampling step of ~ 1 cm~(-1) and an effective resolution of ~ 2 cm~(-1). The observed radiance depends on several parameters of the atmosphere and surface of Mars as described by the radiative transfer equation. Adopting the very general formalism of Bayesian analysis, we determined which quantities are actually retrievable from individual measurements. Namely, they are: the surface temperature, the column density of dust and water ice aerosols in the atmosphere, the air temperature as a function of altitude (in the indicative range 5-45 km above the surface), the surface pressure, and the column density of water vapor and carbon monoxide. These evaluations are carried out taking into account the noise equivalent radiance (NER) of the instrument and the natural variabilities of the investigated parameters in the Martian environment, as estimated from the expectations of the European Martian Climate Dataset v3.1 (EMCD). Other parameters included in the radiative transfer equation shall be assumed as known, because they are not retrievable from individual measurements due to the instrumental NER or an underconstrained inverse problem: the surface emissivity in the thermal infrared, the optical properties of suspended dust and the analytical shape of dust concentration vs. altitude. During the development of the algorithm devoted to these studies, different approaches were evaluated on the basis of formal, computational and scientific considerations, with the aim to develop the general design of an integrated software package. The resulting code was extensively tested on a wide set of simulated PFS spectra. These spectra were computed from the atmospheric and surface conditions extracted from the EMCD, assumed to be representative of the Martian environment for different values of latitude, local time and season. Their comparison with the retrievals from simulated observations allowed us to evaluate the systematic and random errors affecting the procedures with respect to the different quantities involved. The code evaluates the surface temperature with an error in the order of 1 K, while the vertical air temperature profile is computed with an uncertainty less than 2 K from in the region between 5 and 20km above the surface, increasing up to 7 K at 50 km. The column opacity of dust, measured in terms of integrated optical thickness at 1100cm~(-1), is computed with an error of around 0.13. The surface pressure determination is carried out with a typical uncertainty of 0.2-0.3 millibar. Several auxiliary tests allowed us to study the correlations between the different retrieval errors and the possible causes of incorrect PFS data interpretation. The choice of a suitable model for the dust optical properties is demonstrated to be particularly critical. This paper also presents the first discussion about application of the procedure to actual PFS Martian data. Despite the calibration issues still affecting the determination of absolute radiance in the near-infrared, the algorithm is able to achieve a satisfactory modeling of observations in a wide range of situations.
机译:这项工作提出了一种算法,用于科学分析行星傅里叶光谱仪(PFS)的各个校准测量值。该仪器包括在ESA火星快车任务的科学有效载荷中,该仪器可采集250至8200 cm〜(-1)范围内的光谱,采样步长约为1 cm〜(-1),且有效分辨率高。 〜2 cm〜(-1)。如辐射传递方程所描述的,观测到的辐射率取决于大气和火星表面的几个参数。采用贝叶斯分析的非常一般的形式主义,我们确定了实际上可以从单个测量中检索到的量。即,它们是:表面温度,大气中尘埃和水冰气溶胶的柱密度,空气温度与海拔高度的函数关系(在高于地面的5-45 km的指示范围内),表面压力和水蒸气和一氧化碳的柱密度。根据欧洲火星气候数据集v3.1(EMCD)的预期估算,在进行这些评估时要考虑到仪器的噪声当量辐射度(NER)和所研究参数在火星环境中的自然变异性。假定辐射传递方程中包含的其他参数是已知的,因为由于仪器的NER或欠约束的反问题,无法从单独的测量中获取这些参数:热红外中的表面发射率,悬浮粉尘的光学特性以及分析方法灰尘浓度的形状与高度的关系。在致力于这些研究的算法的开发过程中,基于形式,计算和科学考虑,对不同的方法进行了评估,目的是开发集成软件包的总体设计。所生成的代码已在各种模拟的PFS光谱上进行了广泛的测试。这些光谱是根据从EMCD提取的大气和地面条件计算得出的,假设它们代表了火星环境的纬度,当地时间和季节的不同值。他们与模拟观测结果的比较使我们能够评估系统误差和随机误差,这些误差影响所涉及的不同数量的程序。该代码以1 K左右的误差评估表面温度,而从表面上方5至20 km之间的区域中计算得出的垂直空气温度分布的不确定度小于2 K,在50时升高至7 K公里以总光学厚度在1100cm〜(-1)处测量的尘埃柱不透明度计算出的误差约为0.13。表面压力的测定通常具有0.2-0.3毫巴的不确定度。几个辅助测试使我们能够研究不同的检索错误与错误的PFS数据解释的可能原因之间的相关性。事实证明,选择合适的粉尘光学特性模型非常关键。本文还提出了有关将该程序应用于实际PFS火星数据的首次讨论。尽管校准问题仍然影响着近红外绝对辐射的确定,但该算法仍能够在各种情况下实现令人满意的观测建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号